<u>DEF</u> (Limit of a function) Let $S \subset \mathbb{R}$ and let $a \in \mathbb{R}$ or symbol $+\infty$ or $-\infty$. Also let $L \in \mathbb{R}$ or symbol $+\infty$ or $-\infty$. Then for a function defined on S,

$$\lim_{x \to a^S} f(x) = L$$

means that for each sequence (x_n) in S with $\underline{\lim x_n = a}$, we have $\lim_{n \to \infty} f(x_n) = L$.

We say, "the limit as x approaches a along S is L."

Notation:	Let J be an open interval containing a .		Then $S = J \setminus \{a\} = _$		$\{x \in J \mid x \neq a\}$
For example, $J =$	(c, b) where $c < a < b$	Then if $S = J \setminus \{$	$a\} =$	$(c,a) \cup (a,b)$	

<u>DEF</u> Standard Limit Definitions:

or

• <u>Two-sided limit</u>: $\lim_{x \to a} f(x) = L$ if $\lim_{x \to a^S} f(x) = L$ for some set $S = J \setminus \{a\}$ where J is an open interval containing a.

We say, "the limit of f(x) as x approaches a is L."

- <u>Right-hand limit</u>: $\lim_{x \to a^+} f(x) = L$ if $\lim_{x \to a^S} f(x) = L$ for some set S = (a, b)
- Left-hand limit: $\lim_{x \to a^-} f(x) = L$ if $\lim_{x \to a^S} f(x) = L$ for some set S = (c, a)
- Limit at infinity: $\lim_{x \to \infty} f(x) = L$ if $\lim_{x \to a^S} f(x) = L$ for some set $S = (c, \infty)$

$$\lim_{x \to -\infty} f(x) = L \quad \text{if } \lim_{x \to a^S} f(x) = L \text{ for some set } S = (-\infty, b)$$

 $\underline{\mathrm{Ex}} \quad \text{Given that } f(x) = \begin{cases} x - 1, & x \ge 2\\ x + 3, & x < 2 \end{cases} \text{, prove } \lim_{x \to 2^{-}} f(x) = 5.$

 $\underline{\mathbf{Ex}}$ Prove $\lim_{x \to \infty} \frac{1}{x^2 + 1} = 0.$

Note: f need not be defined at a. Even if it is f(a) need not equal $\lim_{x\to a} f(x)$.

<u>THEOREM</u> : If f(x) = g(x) for all $x \in S = J \setminus \{a\}$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

PROOF: Obvious from definitions.

<u>THEOREM</u> : $\lim_{x \to a} f(x) = f(a)$ iff <u>f is continuous at a.</u> [See book for proof.]

Note: This theorem justifies using direct substitution to evaluate limits.

Ex: $\lim_{x \to 3} x^2$ Ex: $\lim_{x \to 3} \frac{9 - x^2}{x - 3}$

[sketch]

<u>LIMIT LAWS</u> for *finite* limits

Let f_1 and f_2 be functions with the following limits

$$\lim_{x \to a} f_1(x) = L_1 \qquad \text{and} \qquad \lim_{x \to a} f_2(x) = L_2 \qquad \text{where } L_1, L_2 \in \mathbb{R} \text{ (i.e. finite)},$$

 then

- 1. $\lim_{x \to a^{S}} [f_{1}(x) \pm f_{2}(x)] = L_{1} \pm L_{2}$ 2. $\lim_{x \to a^{S}} [f_{1}(x) \cdot f_{2}(x)] = L_{1} \cdot L_{2}$ 3. $\lim_{x \to a^{S}} \left[\frac{f_{1}(x)}{f_{2}(x)} \right] = \frac{L_{1}}{L_{2}} \qquad \text{provided } L_{2} \neq 0 \text{ and } f_{2}(x) \neq 0 \text{ for } x \in S.$
- PROOF: Follows easily from Limit Laws for sequences in Section 9

For Composite Functions:

4. Let f be a function with $\lim_{x \to a^S} f(x) = L \in \mathbb{R}$ (finite). Let g be a function defined on $\{f(x) \mid x \in S\} \cup L$. If g is continuous at L, then $\lim_{x \to a^S} (g \circ f)(x) = \lim_{x \to a^S} g(f(x)) = \underline{g(L)}$

[See book for proof.]

 $\underline{\mathrm{Ex}}$ Evaluate $\lim_{x \to 4} e^{x^2}$

<u>THEOREM</u> ($\epsilon - \delta$ property for limits of functions)

Let f be defined on $S \subseteq \mathbb{R}$ and let x_n be in S with $\underline{\lim x_n = a} \in \mathbb{R}$, and let $L \in \mathbb{R}$. Then $\lim_{x \to a} f(x) = L$ iff for each $\epsilon > 0, \exists \underline{\delta > 0}$, such that for $x \in S$ and $|x - a| < \delta$, we have $\underline{|f(x) - L| < \epsilon}$.

Note: Similar property for one-sided limits and limits at infinity - see book

<u>THEOREM</u> Let f be a function defined on $S = J \setminus \{a\}$ for some open interval J containing a. Then $\lim_{x \to a} f(x)$ exists and equals L iff $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = L$ PROOF: Uses the $\epsilon - \delta$ properties

Ex: Heaviside function $H(x) = \begin{cases} 0, & x \le 0\\ 1, & x > 0 \end{cases}$

(a). Sketch H(x) and determine limits as $x \to 0^-, 0^+, 0$.

(b). Prove the assertions in part (a) (using the sequence definition(s)).

Homework: Section 20: #1, 2, 5^{*}, 6^{*}, 9, 10^{*} [11-14 Use Limit Laws/Theorems] *Use sequence definition(s).