DeF (Limit of a function) Let $S \subset \mathbb{R}$ and let $a \in \mathbb{R}$ or symbol $+\infty$ or $-\infty$. Also let $L \in \mathbb{R}$ or symbol $+\infty$ or $-\infty$. Then for a function defined on S,

$$
\lim _{x \rightarrow a^{S}} f(x)=L
$$

means that for each sequence $\left(x_{n}\right)$ in S with $\quad \lim x_{n}=a \quad$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

We say, "the limit as x approaches a along S is $L . "$

Notation: Let J be an open interval containing a. Then $S=J \backslash\{a\}=\underline{\{x \in J \mid x \neq a\}}$

For example, $J=(c, b)$ where $c<a<b$

$$
\text { Then if } S=J \backslash\{a\}=\quad(c, a) \cup(a, b)
$$

Def Standard Limit Definitions:

- Two-sided limit: $\quad \lim _{x \rightarrow a} f(x)=L \quad$ if $\lim _{x \rightarrow a^{S}} f(x)=L$ for some set $S=J \backslash\{a\}$ where J is an open interval containing a.

We say, "the limit of $f(x)$ as x approaches a is $L . "$

- Right-hand limit:

$$
\lim _{x \rightarrow a^{+}} f(x)=L \quad \text { if } \lim _{x \rightarrow a^{S}} f(x)=L \text { for some set } S=
$$

- Left-hand limit: $\quad \lim _{x \rightarrow a^{-}} f(x)=L \quad$ if $\lim _{x \rightarrow a^{S}} f(x)=L$ for some set $S=\underline{(c, a)}$
- Limit at infinity:

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if $\lim _{x \rightarrow a^{S}} f(x)=L$ for some set $S=$ \qquad
or

$$
\lim _{x \rightarrow-\infty} f(x)=L \quad \text { if } \lim _{x \rightarrow a^{S}} f(x)=L \text { for some set } S=
$$

Ex Given that $f(x)=\left\{\begin{array}{ll}x-1, & x \geq 2 \\ x+3, & x<2\end{array}\right.$, prove $\lim _{x \rightarrow 2^{-}} f(x)=5$.

Ex Prove $\lim _{x \rightarrow \infty} \frac{1}{x^{2}+1}=0$.

Note: f need not be defined at a. Even if it is $f(a)$ need not equal $\lim _{x \rightarrow a} f(x)$.
$\underline{\text { THEOREM }}:$ If $f(x)=g(x)$ for all $x \in S=J \backslash\{a\}$, then $\quad \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.
Proof: Obvious from definitions.

Theorem $: \lim _{x \rightarrow a} f(x)=f(a)$ iff f is continuous at a.

Note: This theorem justifies using direct substitution to evaluate limits.
Ex: $\lim _{x \rightarrow 3} x^{2}$
Ex: $\lim _{x \rightarrow 3} \frac{9-x^{2}}{x-3}$

Limit LaWs for finite limits
Let f_{1} and f_{2} be functions with the following limits

$$
\lim _{x \rightarrow a} f_{1}(x)=L_{1} \quad \text { and } \quad \lim _{x \rightarrow a} f_{2}(x)=L_{2} \quad \text { where } L_{1}, L_{2} \in \mathbb{R} \text { (i.e. finite) }
$$

then

1. $\lim _{x \rightarrow a^{S}}\left[f_{1}(x) \pm f_{2}(x)\right]=L_{1} \pm L_{2}$
2. $\lim _{x \rightarrow a^{S}}\left[f_{1}(x) \cdot f_{2}(x)\right]=L_{1} \cdot L_{2}$
3. $\lim _{x \rightarrow a^{S}}\left[\frac{f_{1}(x)}{f_{2}(x)}\right]=\frac{L_{1}}{L_{2}} \quad$ provided $L_{2} \neq 0$ and $f_{2}(x) \neq 0$ for $x \in S$.

Proof: Follows easily from Limit Laws for sequences in Section 9

For Composite Functions:
4. Let f be a function with $\lim _{x \rightarrow a^{S}} f(x)=L \in \mathbb{R}$ (finite). Let g be a function defined on $\{f(x) \mid x \in S\} \cup L$.

If g is continuous at L , then $\lim _{x \rightarrow a^{S}}(g \circ f)(x)=\lim _{x \rightarrow a^{S}} g(f(x))=\quad g(L)$

Ex Evaluate $\lim _{x \rightarrow 4} e^{x^{2}}$

THEOREM ($\epsilon-\delta$ property for limits of functions)
Let f be defined on $S \subseteq \mathbb{R}$ and let x_{n} be in S with $\quad \lim x_{n}=a \quad \in \mathbb{R}$, and let $L \in \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)=L$ iff for each $\epsilon>0, \exists _\quad \delta>0 \quad$, such that for $x \in S$ and $|x-a|<\delta$, we have $|f(x)-L|<\epsilon$.

Note: Similar property for one-sided limits and limits at infinity - see book

ThEOREM Let f be a function defined on $S=J \backslash\{a\}$ for some open interval J containing a. Then $\lim _{x \rightarrow a} f(x)$ exists and equals L iff $\lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a^{-}} f(x)=L$ Proof: Uses the $\epsilon-\delta$ properties

Ex: Heaviside function $H(x)= \begin{cases}0, & x \leq 0 \\ 1, & x>0\end{cases}$
(a). Sketch $H(x)$ and determine limits as $x \rightarrow 0^{-}, 0^{+}, 0$.
(b). Prove the assertions in part (a) (using the sequence definition(s)).

Homework: Section 20: \#1, 2, 5* $, 6^{*}, 9,10^{*}$ [11-14 Use Limit Laws/Theorems]
*Use sequence definition(s).

