Completeness Axiom: Every nonempty subset S of \mathbb{R} that is bounded above has a real supremum.

i.e .

Complete the proof below for the Corollary to the Completeness Axiom

Corollary: Every nonempty subset S of \mathbb{R} that is bounded below has a real infimum.

Proof:

Let S be a nonempty subset of \mathbb{R} and ______. [Show inf S exists.]

Define $T = \{t = -s | s \in S\}.$

Since S is bounded below, $\exists m \in \mathbb{R}$, such that ______ $\forall s \in S$.

Then $-s \leq -m \ \forall s \in S$.

Thus $\forall t \in T.$

In other words, T is bounded above by _____.

Now by the Completeness Axiom, _____.

[To complete the proof we will show that $-\sup T = \inf S$. In order to show this, we must verify the definition of infimum by showing

(i): $-\sup T$ is a ______ of S and (ii): $-\sup T$ is \geq all other lower bounds of S.]

By definition of supremum,

 $\underbrace{\forall t \in T}_{\sup T \ge -s \ \forall s \in S}$

 $\underline{\qquad} \leq \underline{\qquad} \forall s \in S$

Thus, $-\sup T$ is _____ for S. [Thus, we have shown (i)]

Let c be a lower bound for S. [Show that ______.]

Then $\forall s \in S.$

Then $-s \leq -c \ \forall s \in S$, which implies that

 $t\leq -c\;\forall t\in T,$

which implies that -c is _____ for T.

Thus, $\sup T \leq -c$ by .

Therefore,	. In other words,	$-\sup T$	is the	greatest	lower	bound.	[i.e.	We have shown	1 <i>(ii)</i> .]

Thus, by definition of infimum, ______.

Therefore, $\inf S \in \mathbb{R}$ exists.

Complete the proof below for the Archimedean Property.	[Note: This property holds for both \mathbb{R} and \mathbb{Q} .]				
Archimedean Property : If $a > 0$ and $b > 0$, then $\exists n \in \mathbb{N}$ such that $n \in \mathbb{N}$	a > b				
<u>Proof</u> :					
Let $a > 0, b > 0$ and BWOC suppose	[Hint: Don't forget to negate "there exists"]				
Let $S = \{ na \mid n \in \mathbb{N} \}.$					
Then is an upper bound for S ,					
and by the Completeness Axiom,					
Since $a > 0$, then $-a < 0$.					
Then adding $\sup S$ to both sides \Rightarrow < $\sup S$.					
Thus $\sup S - a$ is not an upper bound for S because					
Hence, there must be an <i>element of</i> S that is	·				
That is, $\exists ma \in S$ such that $ma > \sup S - a$.					
Then $ma + a$					
$\Rightarrow (m+1)a > \sup S. \qquad (*)$					
But $(m+1) \in \mathbb{N}$,					
so $(m+1)a \in \underline{\qquad}$. $- \times -$					
This is a contradiction, since an element of S cannot be be an upper bound.	[see (*)] or $\sup S$ would fail to				

Therefore, $\exists n \in \mathbb{N}$, s.t. na > b.

1. Prove the following 2 corollaries to the Archimedean Property.

[Hint: Corollaries are direct results of a "main" theorem... so use the main theorem. Don't redo the proof of the main theorem.]

(a). If a > 0, then $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < a$.

(b). If b > 0, then $\exists n \in \mathbb{N}$ such that b < n.

2. Section 4, p. 26: #1-4(a, e, i, m, q, u, w), 7(b), 8, 10, [11, 14 if finished Denseness of Q]

3. Prove the following:

Let A be a nonempty subset of \mathbb{R} that is bounded above. If $x < \sup(A)$, then $\exists a \in A$ such that $x < a < \sup(A)$.