Completeness Axiom: Every nonempty subset S of \mathbb{R} that is bounded above has a real supremum.
i.e \qquad .

Complete the proof below for the Corollary to the Completeness Axiom
Corollary: Every nonempty subset S of \mathbb{R} that is bounded below has a real infimum.

Proof:

Let S be a nonempty subset of \mathbb{R} and \qquad . [Show inf S exists.]

Define $T=\{t=-s \mid s \in S\}$.
Since S is bounded below, $\exists m \in \mathbb{R}$, such that \qquad $\forall s \in S$.

Then $-s \leq-m \forall s \in S$.
Thus \qquad $\forall t \in T$.

In other words, T is bounded above by \qquad .

Now by the Completeness Axiom, \qquad .
[To complete the proof we will show that $-\sup T=\inf S$.
In order to show this, we must verify the definition of infimum by showing

$$
\text { (i): }-\sup T \text { is a } \quad \text { of } S \text { and (ii): }-\sup T \text { is } \geq \text { all other lower bounds of } S \text {.] }
$$

By definition of supremum,
\qquad $\forall t \in T$
$\sup T \geq-s \forall s \in S$
\qquad \leq \qquad $\forall s \in S$

Thus, $-\sup T$ is \qquad for S. [Thus, we have shown (i)]

Let c be a lower bound for S. [Show that \qquad .]
Then \qquad $\forall s \in S$.

Then $-s \leq-c \forall s \in S$, which implies that
$t \leq-c \forall t \in T$,
which implies that $-c$ is \qquad for T.

Thus, $\sup T \leq-c$ by \qquad .

Therefore, \qquad . In other words, $-\sup T$ is the greatest lower bound. [i.e. We have shown (ii).]

Thus, by definition of infimum, \qquad .

Therefore, $\inf S \in \mathbb{R}$ exists.

Complete the proof below for the Archimedean Property.
[Note: This property holds for both \mathbb{R} and \mathbb{Q}.]
Archimedean Property: If $a>0$ and $b>0$, then $\exists n \in \mathbb{N}$ such that $n a>b$
PROOF:
Let $a>0, b>0$ and BWOC suppose \qquad .
[Hint: Don't forget to negate "there exists"]
Let $S=\{n a \mid n \in \mathbb{N}\}$.
Then \qquad is an upper bound for S,
and by the Completeness Axiom, \qquad .
Since $a>0$, then $-a<0$.
Then adding $\sup S$ to both sides \Rightarrow \qquad $<\sup S$.

Thus $\sup S-a$ is not an upper bound for S because \qquad .

Hence, there must be an element of S that is \qquad .

That is, $\exists m a \in S$ such that $m a>\sup S-a$.
Then $m a+a$ \qquad .
$\Rightarrow(m+1) a>\sup S$.
But $(m+1) \in \mathbb{N}$,
so $(m+1) a \in$ \qquad . $-\underset{ }{-}$

This is a contradiction, since an element of S cannot be \qquad [see (*)] or $\sup S$ would fail to be an upper bound.

Therefore, $\exists n \in \mathbb{N}$, s.t. $n a>b$.

1. Prove the following 2 corollaries to the Archimedean Property.
[Hint: Corollaries are direct results of a"main" theorem... so use the main theorem. Don't redo the proof of the main theorem.]
(a). If $a>0$, then $\exists n \in \mathbb{N}$ such that $\frac{1}{n}<a$.
(b). If $b>0$, then $\exists n \in \mathbb{N}$ such that $b<n$.
2. Section 4, p. 26: \#1-4(a, e, i, m, q, u, w), 7(b), 8,10 , [11, 14 if finished Denseness of \mathbb{Q}]
3. Prove the following:

Let A be a nonempty subset of \mathbb{R} that is bounded above. If $x<\sup (A)$, then $\exists a \in A$ such that $x<a<\sup (A)$.

