Finish proof of $|a b|=|a||b|($ cases $2 \& 4)$. Cases $1 \& 3$ done in class.

Section 3, p. 19: \#5, 6, 7, 8 [See hints below.]
\#3.5(a) This proof justifies taking off absolute values, [e.g. $|x-3|<4$ can be written as $-4<x-3<4$.]
Remember it is an if and only if problem, so you must prove both "If A, then B" ( $\Rightarrow:$ : and "If B, then A" $(\Leftarrow:)$.
$\Rightarrow$ : Show $-a \leq b$ and $b \leq a$ separately.
$\Leftarrow$ : Use 2 cases: $b \geq 0$ and $b<0$.
\#3.5(b) If you can show $-|a-b| \leq|a|-|b| \leq|a-b|$, then you can use part (a). Show $-|a-b| \leq|a|-|b|$ and $|a|-|b| \leq|a-b|$ separately.
\#3.6 How do you mathematically make 3 (or more) things into 2 things?
\#3.8 [ I am introducing a part(a) to prove first which will help to prove the original question.]
(a) Prove: Let $a, b \in \mathbb{R}$. If $a>b$, then $b_{1}^{*}=b+\frac{1}{2}|a-b|$ is between $b$ and $a\left[\right.$ i.e. $\left.b<b_{1}^{*}<a\right]$.

Before you prove part(a), draw a number line with $a, b$, and $b_{1}^{*}$. From this picture, describe specifically how the point $b_{1}^{*}$ is related to $a$ and $b$.
(b) Use contradiction (and at some point, part (a)) to prove the original \#3.8:

Let $a, b \in \mathbb{R}$. Show that if $a \leq b_{1} \forall b_{1}>b$, then $a \leq b$.

