Peano Axioms and Expanding Number Systems		Page 1
<u>DEF</u> The set of	is the set $\{1, 2, 3, \ldots\}$ and denoted	
<u>DEF</u> The successor of a natural number is	·	
i.e. For each $n \in \mathbb{N}$, the successor is		Similar definition for predecessor.
Peano Axioms ()		

- N1. $1 \in \mathbb{N}$
- N2. If $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$
- N3. 1 is not a successor of any $n \in \mathbb{N}$
- N4. If $n, m \in \mathbb{N}$ have the same successor, then n = m.
- N5. If $S \subseteq \mathbb{N}$ and $1 \in S$ and $\forall n \in S, n+1 \in S$, then $S = \mathbb{N}$

MATHEMATICAL INDUCTION IS A DIRECT CONSEQUENCE OF N5

 $S \subseteq \mathbb{N}$ $1 \in \mathbb{N}$ If $n \in S, \text{then } n+1 \in S$

$$S = \mathbb{N}$$

<u>DEF</u> The set of <u>Natural Numbers</u> is $\{1, 2, 3, ...\}$ and denoted \mathbb{N} .

If $n, m \in \mathbb{N}$,

1. Is $n + m \in \mathbb{N}$? **2.** Is $n - m \in \mathbb{N}$?

 $\underline{\text{DEF}}$ The set of **Integers** is

and denoted \mathbb{Z} .

If $n, m \in \mathbb{Z}$,

3. Is $n \cdot m \in \mathbb{Z}$?

4. Is
$$\frac{m}{n} \in \mathbb{Z}$$
?

<u>DEF</u> The set of <u>**Rational Numbers**</u> is the set of all numbers of the form The set is denoted \mathbb{Q} .

Notes:

- Avoid duplicate numbers in $\mathbb Q$ by considering
- Are terminating decimals in \mathbb{Q} ?
- Are repeating decimals in \mathbb{Q} ?
- Are all decimals in \mathbb{Q} ?

e.g. 3.741 =

e.g. $0.33\overline{3} =$

$\underline{\mathrm{D}\mathrm{EF}}$ An Algebraic Number is a number that is

i.e. An algebraic number is any number x = r that satisfies an equation of the form

 $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 = 0$ where $a_0, a_1, \ldots, a_n \in \mathbb{Z}, a_n \neq 0$ and $n \ge 1$.

Are all algebraic numbers not rational?

Are all rational numbers
$$x = \frac{m}{n}$$
 algebraic?

Are all numbers that are not rational also algebraic?