Def The set of \qquad is the set $\{1,2,3, \ldots\}$ and denoted \qquad .

Def The successor of a natural number is \qquad .
i.e. For each $n \in \mathbb{N}$, the successor is \qquad .

Peano Axioms (\qquad)

N1. $1 \in \mathbb{N}$
N2. If $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$
N3. 1 is not a successor of any $n \in \mathbb{N}$
N4. If $n, m \in \mathbb{N}$ have the same successor, then $n=m$.
N5. If $S \subseteq \mathbb{N}$ and $1 \in S$ and $\forall n \in S, n+1 \in S$, then $S=\mathbb{N}$

Mathematical Induction is a Direct Consequence of N5

$$
\begin{aligned}
& S \subseteq \mathbb{N} \\
& 1 \in \mathbb{N}
\end{aligned}
$$

If $n \in S$, then $n+1 \in S$

$$
S=\mathbb{N}
$$

Def The set of Natural Numbers is $\{1,2,3, \ldots\}$ and denoted \mathbb{N}.
If $n, m \in \mathbb{N}$,

1. Is $n+m \in \mathbb{N}$?
2. Is $n-m \in \mathbb{N}$?

DeF The set of Integers is \qquad and denoted \mathbb{Z}.

If $n, m \in \mathbb{Z}$,
3. Is $n \cdot m \in \mathbb{Z}$?
4. Is $\frac{m}{n} \in \mathbb{Z}$?

Def The set of Rational Numbers is the set of all numbers of the form The set is denoted \mathbb{Q}.

Notes:

- Avoid duplicate numbers in \mathbb{Q} by considering
- Are terminating decimals in \mathbb{Q} ?
e.g. $3.741=$
- Are repeating decimals in \mathbb{Q} ? e.g. $0.33 \overline{3}=$
- Are all decimals in \mathbb{Q} ?

Def An Algebraic Number is a number that is
i.e. An algebraic number is any number $x=r$ that satisfies an equation of the form
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}=0 \quad$ where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}, a_{n} \neq 0$ and $n \geq 1$.

Are all algebraic numbers not rational?

Are all rational numbers $x=\frac{m}{n}$ algebraic?

Are all numbers that are not rational also algebraic?

