Direct Proof

If A, then B
Proof

1. Start by assuming the hypothesis (
e.g. "Let A" "Suppose A" "Assume A"

Remember what you want to prove: [Show B]
2. Use Definitions, Axioms, Theorems, Algebra, etc.
to write the next line(s).
Hint:

Repeat Step 2 as much as needed:

- Each new line follows from previous one(s)
- Keep in mind where you are headed

3. End with Conclusion ()
"Therefore B."

Indirect Proof or Proof by Contrapositive

If A, then B
$[$ Note $A \rightarrow B \equiv \sim B \rightarrow \sim A]$
Proof (by contrapositive)

1. Start by assuming not B
e.g. "Suppose not B"
[Show not A]
2. Follow steps of Direct Proof to prove not A.
3. Therefore, the contrapositive "If A, then B " is also true.

Example

Prove: If $x+10$ is odd, then x is odd
Proof

1. Let
[Show
2. Then by definition, \exists integer k such that $x+10=2 k+1$.
$[$ Show $x=2 m+1]$
Thus,

$$
\begin{aligned}
x & =2 k+1-10 \\
& =2 k-10+1 \\
& =2(k-5)+1 \\
& =2 m+1 \text { for integer } m=k-5
\end{aligned}
$$

3. Therefore, by definition, x is odd.

Example

Prove: If $x+10$ is odd, then x is odd
$\underline{\text { PROOF (by contrapositive) }}$

1. Suppose x is not odd. [Show $x+10$ is not odd.]
2. Then x is even and by definition, \exists integer k such that $x=2 k$

$$
\begin{aligned}
\Rightarrow x+10 & =2 k+10 \\
& =2(k+5) \\
& =2 m \text { for integer } m=k+5
\end{aligned}
$$

Thus, $\mathrm{x}+10$ is even. That is, $x+10$ is not odd. i.e. If x is not odd, then $x+10$ is not odd
3. Therefore, the contrapositive

If $x+10$ is odd, then x is odd is also true.

Proof by Contradiction

If A , then B

Proof

1. Let the conditions of A
2. BWOC, suppose
3. Use Definitions, Axioms, Theorems, etc. to create a logical argument until...
[usually contradicts condition A in step 1]

4. "Therefore B"

Proof by Induction

Prove that a proposition P_{n} is true for all n

$$
\text { (or all } n \geq m \text {) }
$$

Proof

Basis ($n=1$ or $n=m$): Verify that the proposition holds for $n=1$ or m.

Induction: Assume true for $n=k$. i.e. P_{k} is true.
[Show that it holds for $n=k+1$ i.e. Show that P_{k+1} is true.]

Example

If $x+10$ is odd, then x is odd

Proof

1. Let
2. BWOC, suppose
3. Then by definition, \exists integer k such that $x=2 k$ Then

$$
\begin{aligned}
x+10 & =2 k+10 \\
& =2(k+5) \\
& =2 m \text { for integer } m=k+5
\end{aligned}
$$

Thus, $x+10$ is even \longrightarrow
4. Therefore, x must be odd.

Example

Prove that $1+3+5+\cdots+(2 n-1)=n^{2} \quad \forall n \in \mathbb{N}$

Proof

Basis $(n=1): \quad 1=1^{2} \quad \sqrt{ }$

Induction: Assume true for $n=k$.
i.e. $1+3+5+\cdots+(2 k-1)=k^{2}$ is true.
$\left[\right.$ Show that $\left.1+3+\cdots+(2 k-1)+[2(k+1)-1]=(k+1)^{2}\right]$
$1+3+\cdots+(2 k-1)+[2(k+1)-1]$

- Start with
- Use algebra to manipulate so that you can....
- ...
- More manipulation, if needed to look like the other side of P_{k+1} statement.

Thus P_{k+1} is true.
Therefore, by Mathematical Induction, the proposition P_{n} is true for all n (or $n \geq m$).
i.e. $1+3+\cdots+(2 k-1)+[2(k+1)-1]=(k+1)^{2}$

Thus it holds for $n=k+1$
Therefore, by Mathematical Induction, $1+3+5+\cdots+(2 n-1)=n^{2} \quad \forall n \in \mathbb{N}$.

Disproof by Counterexample

Show that "If A, then B " is false by counterexample, by finding specific values that hold for A, but are false for B.

Example: If $a<b$, then $a c<b c$. Let $a=2, b=3$, and $c=-4$ so that $a<b$. But $a c=2(-4)=-8 \nless-12=3(-4)=b c$.

