Name: _

Math 381 Advanced Calculus – Crawford

Books, notes (in any form), and calculators are not allowed. You may use a sheet of Field Properties and their Consequences. *Show all your work*. Good Luck!

1. (6 pts) Using only the Field Properties and Consequences of Field Properties, prove the following. [Clearly justify each step by indicating which properties you use.]

Let $a \in F$, where F is a field. If $a \neq 0$, then

(a). $a^{-1} \neq 0$ and

(b). $(a^{-1})^{-1} = a$.

2. (4 pts) Use induction to prove the following:

If 0 < x < y, then $x^n < y^n$ for all $n \in \mathbb{N}$.

(a).
$$S = \left\{ \frac{n}{n+1} \mid n \in \mathbb{N} \right\}$$

(b).
$$T = \{r \in \mathbb{Q} \mid r^2 < 5\}$$

4. (6 pts) Determine whether the following statements are TRUE or FALSE. If it is <u>FALSE</u>, give a counterexample. If it is <u>TRUE</u>, no additional work needed.

T F $\forall a, b \in \mathbb{R}$, if a < b, then |a| < |b|.

T F $\forall a, b \in \mathbb{R}, |a - b| \le |a| + |b|.$

T F Let S be a nonempty bounded subset of \mathbb{R} . If $\sup S \in S$, then $\sup S = \max S$.