Name:
Quiz 1
Math 381 Advanced Calculus - Crawford
Books, notes (in any form), and calculators are not allowed. You may use a sheet of Field Properties and their Consequences. Show all your work. Good Luck!

1. (6 pts) Using only the Field Properties and Consequences of Field Properties, prove the following. [Clearly justify each step by indicating which properties you use.]

Let $a \in F$, where F is a field. If $a \neq 0$, then
(a). $a^{-1} \neq 0$ and
(b). $\left(a^{-1}\right)^{-1}=a$.
2. (4 pts) Use induction to prove the following:

If $0<x<y$, then $x^{n}<y^{n}$ for all $n \in \mathbb{N}$.
3. (4 pts) For the following subsets of \mathbb{R}, state the minimum, maximum, infimum, and supremum, if they exist. If it does not exist, clearly state this.
(a). $S=\left\{\left.\frac{n}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$
(b). $T=\left\{r \in \mathbb{Q} \mid r^{2}<5\right\}$
4. (6 pts) Determine whether the following statements are TRUE or FALSE.

If it is FALSE, give a counterexample. If it is TRUE, no additional work needed.

T $\mathrm{F} \quad \forall a, b \in \mathbb{R}$, if $a<b$, then $|a|<|b|$.

T \quad F $\forall a, b \in \mathbb{R},|a-b| \leq|a|+|b|$.

T F Let S be a nonempty bounded subset of \mathbb{R}. If $\sup S \in S$, then $\sup S=\max S$.

