DEFINITION

A series $\sum a_n$ satisfies the <u>Cauchy Criterion</u> if its sequence of partial sums s_k is a Cauchy sequence.

i.e. For each $\epsilon > 0$, there exists an N such that $|s_k - s_m| < \epsilon$ whenever k, m > N

Fill in the blanks to derive an alternate form of the Cauchy Criterion:

WLOG, assume $k \ge m$.

So, clearly k > m - 1 and consider when the Cauchy Criterion holds for k and m - 1 both greater than N.

Recall,
$$s_k =$$
 , so

$$|s_k - s_{m-1}| = \left| \sum_{n=1}^k a_n - \sum_{n=1}^{m-1} a_n \right|$$

$$= |(a_1 + a_2 + a_3 + \dots + a_{m-1} + a_m + a_{m+1} + \dots + a_k) - (a_1 + a_2 + a_3 + \dots + a_{m-1})|$$

$$= \left| \underbrace{ \left| \sum_{n=m}^k a_n \right|} \right|$$

Now substitute this expression into the Cauchy Criterion:

For each $\epsilon > 0$, there exists an N such that		$ <\epsilon$ whenever $k \ge m > N$
---	--	-------------------------------------

<u>THEOREM</u> An infinite series $\sum a_n$ converges if and only if it satisfies the Cauchy Criterion.

Proof

⇒: Suppose $\sum a_n$ converges. Then, by definition, the ______ converges. Thus, the sequence s_k is Cauchy since ______. Therefore, by definition, the series satisfies the Cauchy Criterion. \Leftarrow : Suppose the series $\sum a_n$ ______. Then, by definition, the sequence of partial sums, s_k , is a Cauchy sequence. Thus, s_k converges and by definition, ______.

Cauchy Criterion

<u>COROLLARY</u> If $\sum a_n$ converges, then $\lim a_n = 0$

Proof

Let $\epsilon > 0$ and suppose the series $\sum a_n$ converges. Then $\sum a_n$ i.e. For $\epsilon > 0$, there exists an N such that $\left|\sum_{n=m}^k a_n\right| < \epsilon$ whenever $k \ge m > N$.

In particular, this is true when k = m, i.e.

 $< \epsilon$ whenever m > N. (*)

But $\left|\sum_{n=m}^{m} a_n\right| = |a_m| = |a_m - 0|$, so from (*) we have ______ whenever m > N. Therefore, $\lim a_m = 0$ \blacksquare ______ Note: *m* is just the index reference, so this is e

Note: m is just the index reference, so this is equivalent to $\lim a_n = 0$

Given all previous definitions and theorems about series, circle all of the following that are true: Recall $s_k = \sum_{k=1}^{k} a_k$

If $\sum a_n$ diverges, then $\lim a_n \neq 0$

If $\lim a_n = 0$, then $\sum a_n$ converges

If $\lim a_n \neq 0$, then $\sum a_n$ diverges If $\lim s_k = 23$, then $\lim a_n = 0$

If $\lim a_n = \frac{1}{2}$, then $\sum a_n$ converges If $\lim s_k = -4$, then we have no information about $\sum a_n$

If $\lim a_n = 0$, then $\lim s_k = s \in \mathbb{R}$ If $\sum a_n = 1$, then s_k converges, but not necessarily to 1

Homework:

Finish Worksheet(s) Section 14: #5, 6, 9 Find the <u>actual sum</u> of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ using the partial fraction decomposition $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$ and considering the sequence of partial sums s_k . [Hint: Write out s_1, s_2, s_3 , etc. and find an expression for general s_k – think telescoping.]