DeF A set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is an orthogonal set if each pair of distinct vectors in the set is orthogonal.

$$
\text { i.e. } \mathbf{u}_{i} \cdot \mathbf{u}_{j}=\quad 0 \quad \text { for } i \neq j
$$

Note
From properties of the inner product, if $i=j$, then $\mathbf{u}_{i} \cdot \mathbf{u}_{i}$ \qquad ≥ 0 . Furthermore, $\mathbf{u}_{i} \cdot \mathbf{u}_{i}=0$ iff \qquad $\mathbf{u}_{i}=\mathbf{0}$.

1. Verify that the set $\left\{\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ -5 \\ 3\end{array}\right]\right\}$ is an orthogonal set. [Compute three inner products.]

THEOREM If $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is linearly independent.

Proof Let S be defined as above. [Show that S is linearly independent.]

Consider the equation [i.e. Show that if $\mathbf{0}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}$ $\mathbf{0}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p} \quad$ for some scalars $c_{1}, c_{2}, \ldots, c_{p}$. \qquad].
$\mathbf{0} \cdot \mathbf{u}_{1}=\quad\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} \quad$ by taking the inner product with \mathbf{u}_{1} of both sides.
$0=c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{1}+c_{2} \mathbf{u}_{2} \cdot \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p} \cdot \mathbf{u}_{1}$

$0=c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)$
$\Rightarrow c_{1}=0 \quad$ or $\quad \mathbf{u}_{1} \cdot \mathbf{u}_{1}=0$.

But if $\mathbf{u}_{1} \cdot \mathbf{u}_{1}=0$ then $\mathbf{u}_{1}=$ \qquad , which is not possible since S is a set of \qquad

Therefore \qquad .

Similarly, $c_{2}=c_{3}=\ldots=c_{p}=0$ by taking the dot product of $(*)$ with \qquad \mathbf{u}_{j} for $j=2,3, \ldots, p$.
i.e. The equation $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}=\mathbf{0}$ only if all of the weights $c_{1}=c_{2}=\ldots=c_{p}=0$.

Therefore (by definition), S is linearly independent .

COROLLARY If $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is a basis for the subspace W spanned by S.

Proof Since S spans W and S is linearly independent by \qquad , S is is a basis for W by the definition of \qquad basis _.
2. Let W be the subspace spanned by $S=\left\{\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ -5 \\ 3\end{array}\right]\right\}$.

You showed this was an orthogonal set in $\# 1$, so by the corollary it forms a basis for W. Then any vector $\mathbf{y} \in W$ can be written as a linear combination of the vectors in S. i.e. $\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$ for weights c_{1}, c_{2}, and c_{3}.
Given $\mathbf{y}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right] \in W$, find the weights.

DeF An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis of W that is also an orthogonal set.

Note The basis in \#2 is an orthogonal basis. But why are orthogonal bases nice? [Answered by next theorem.]

ThEOREM Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Each \mathbf{y} in W can be written as a linear combination $\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}$ where the weights are given by
$c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} \quad$ for $j=1,2, \ldots, p \quad$ [Note Don't fill in this formula until you have derived it in the proof.]
PROOF Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}.
Let \mathbf{y} be in W. Therefore \mathbf{y} can be written as $\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}$
Form the dot product with \mathbf{u}_{1} :
$\mathbf{y} \cdot \mathbf{u}_{1}=\underline{\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1}}$
$\mathbf{y} \cdot \mathbf{u}_{1}=c_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{1}+c_{2} \mathbf{u}_{2} \cdot \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p} \cdot \mathbf{u}_{1}$

Then since $\mathbf{u}_{1} \neq \mathbf{0}$ (why? _ linear independence __ $) \Rightarrow \mathbf{u}_{1} \cdot \mathbf{u}_{1} \ldots \neq 0 \quad$ so we can divide by it.
Therefore $c_{1}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}$.
Similarly, for the coefficients we obtain $c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}$ for $j=1,2, \ldots, p$. \quad Write this formula in the theorem above.
3. Redo the problem \#2, using this formula to find the weights. [Compare your answers to \#2.]

DEF A set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is an orthonormal set if it is an orthogonal set of unit vectors.

DEF An orthonormal basis for a subspace W of \mathbb{R}^{n} is a basis of W that is also an orthonormal set.

Ex The standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}=\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \ldots,\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{n}.

LEMMA A set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is orthonormal if and only if $\mathbf{u}_{i} \cdot \mathbf{u}_{j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}$

$$
\text { [Note Alternate notation: } \mathbf{u}_{i} \cdot \mathbf{u}_{j}=\delta_{i j} \text { where } \delta_{i j}=\left\{\begin{array}{ll}
1, & i=j \\
0, & i \neq j
\end{array}\right. \text { is the Kronecker delta.] }
$$

Proof Do this proof later and turn it in with the 6.2 homework. Go on to the rest of the worksheet now.
[Reminder from last page] \quad Orthonormal $\Rightarrow \mathbf{u}_{i} \cdot \mathbf{u}_{j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}$

Then the theorem on page 2 can be modified for Orthonormal Bases:

Theorem Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n}. Each \mathbf{y} in W can be written as a linear combination $\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}$ where the weights are given by
$c_{j}=\mathbf{y} \cdot \mathbf{u}_{j} \quad$ for $j=1,2, \ldots, p . \quad$ [Fill in the correct (simplified) formula.]
4. Given the orthogonal basis from problems $\# 1-3$, i.e. $S=\left\{\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ -5 \\ 3\end{array}\right]\right\}$,
(a). Find an orthonormal basis. [Hint: It's already an orthogonal basis. How do you make them of length one?]
(b). Use the formula in the theorem above, to write $\mathbf{y}=\left[\begin{array}{r}3 \\ -1 \\ 4\end{array}\right]$ as a linear combination of the basis vectors found in part (a). i.e. Find the weights.

