<u>Def</u> Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^n . The ______ of \mathbf{u} and \mathbf{v} , denoted $\mathbf{u} \cdot \mathbf{v}$ is defined as

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & u_3 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix} =$$

Note The result of an inner product is a ______.

$$\underline{\mathbf{E}}\underline{\mathbf{x}}$$
 Given $\mathbf{u} = \begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, compute

(a). u · v

(b). v · u

(c). u·u

THEOREM Properties of Inner Product

(a).
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

(b).
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

(c).
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

(d).
$$\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$$

(e).
$$\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$$
 iff $\mathbf{u} = \mathbf{0}$

What is the distance between two points (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 ?

Suppose the vector $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ in \mathbb{R}^2 is in standard position. What is the length of the vector \mathbf{v} ?

What are the corresponding formulas in \mathbb{R}^3 ?

Extend these ideas to \mathbb{R}^n :

<u>Def</u> Let \mathbf{v} be a vector in \mathbb{R}^n . The ______ of \mathbf{v} , denoted $\|\mathbf{v}\|$ (or $|\mathbf{v}|$), is the nonnegative scalar defined by

 $\|\mathbf{v}\| =$

Theorem For any scalar c, $||c\mathbf{v}|| = |c|||\mathbf{v}||$

Proof

<u>Def</u> A _____ vector is a vector with a length of one.

 $\underline{\mathbf{E}\mathbf{x}} \text{ Given } \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 2 \\ 0 \end{bmatrix}, \text{ find a unit vector } \mathbf{u} \text{ in the same direction as } \mathbf{v}.$

Step 1. Find the length of \mathbf{v} .

Step 2. Divide **v** by its length $\|\mathbf{v}\|$, i.e. $\mathbf{u} = \frac{\mathbf{v}}{\|v\|}$.

 ${f u}$ points in the same direction because

u has a length of 1 since _____

 $\underline{\text{NOTE}}$ The process of finding a unit vector in the same direction as \mathbf{v} is called \mathbf{v} .

Recall, that a basis for a vector space (or subspace) is not unique.

 $\underline{\mathrm{Ex}}$ Let W be the subspace of \mathbb{R}^3 that is spanned by $\mathcal{B}_1 = \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$

Find a basis for W that contains only unit vectors.

Recall in \mathbb{R} , the absolute value can be thought of as _____ .

Ex
$$|3 - 7|$$

$$\underline{\mathrm{Ex}} |x-5|$$

More generally, the distance between a and b is

Extend this idea to vectors in \mathbb{R}^2 .

[Sketch \mathbf{u} and \mathbf{v} .]

Extend to \mathbb{R}^n .

<u>Def</u> Let ${\bf u}$ and ${\bf v}$ be vectors in \mathbb{R}^n . The ______ between ${\bf u}$ and ${\bf v}$, denoted ______ , is the length of the vector ${\bf u}-{\bf v}$.

i.e. $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| =$

 $\underline{\mathbf{E}\mathbf{x}} \text{ Find the distance between } \mathbf{u} = \begin{bmatrix} 4\\1\\0\\-1 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 0\\0\\2\\-3 \end{bmatrix}$