Def Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. The \qquad of \mathbf{u} and \mathbf{v}, denoted $\mathbf{u} \cdot \mathbf{v}$ is defined as
$\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llllr}u_{1} & u_{2} & u_{3} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{r}v_{1} \\ v_{2} \\ v_{3} \\ \vdots \\ v_{n}\end{array}\right]=$
\qquad .

Ex Given $\mathbf{u}=\left[\begin{array}{r}3 \\ -4 \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$, compute
(a). $u \cdot v$
(b). $v \cdot u$
(c). $\mathbf{u} \cdot \mathbf{u}$

Theorem Properties of Inner Product
(a). $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b). $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c). $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(d). $\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$
(e). $\mathbf{u} \cdot \mathbf{u}=\mathbf{0}$ iff $\mathbf{u}=\mathbf{0}$

What is the distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2} ?

Suppose the vector $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ in \mathbb{R}^{2} is in standard position. What is the length of the vector \mathbf{v} ?

What are the corresponding formulas in \mathbb{R}^{3} ?

Extend these ideas to \mathbb{R}^{n} :
Def Let \mathbf{v} be a vector in \mathbb{R}^{n}. The \qquad of \mathbf{v}, denoted $\|\mathbf{v}\|$ (or $|\mathbf{v}|$), is the nonnegative scalar defined by
$\|\mathbf{v}\|=$

Theorem For any scalar $c,\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$

PROOF

Def A \qquad vector is a vector with a length of one.

Ex Given $\mathbf{v}=\left[\begin{array}{r}2 \\ -1 \\ 2 \\ 0\end{array}\right]$, find a unit vector \mathbf{u} in the same direction as \mathbf{v}.
Step 1. Find the length of \mathbf{v}.

Step 2. Divide \mathbf{v} by its length $\|\mathbf{v}\|$, i.e. $\mathbf{u}=\frac{\mathbf{v}}{\|v\|}$.
u points in the same direction because
\mathbf{u} has a length of 1 since \qquad

Note The process of finding a unit vector in the same direction as \mathbf{v} is called \qquad v.

Recall, that a basis for a vector space (or subspace) is not unique.
Ex Let W be the subspace of \mathbb{R}^{3} that is spanned by $\mathcal{B}_{1}=\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$
Find a basis for W that contains only unit vectors.

Recall in \mathbb{R}, the absolute value can be thought of as \qquad .
Ex $|3-7|$
Ex $|x-5|$

More generally, the distance between a and b is

Extend this idea to vectors in \mathbb{R}^{2}.

Extend to \mathbb{R}^{n}.
Def Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. The \qquad between \mathbf{u} and \mathbf{v}, denoted \qquad , is the length of the vector $\mathbf{u}-\mathbf{v}$.
i.e. $\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=$
$\underline{\text { Ex }}$ Find the distance between $\mathbf{u}=\left[\begin{array}{r}4 \\ 1 \\ 0 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}0 \\ 0 \\ 2 \\ -3\end{array}\right]$

