Theorem
[Section 5.1, Theorem 2]
If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ are r eigenvectors that correspond to r distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

Proof

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ be eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A.
[Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.]
Since \mathbf{v}_{1} is an \qquad , $\mathbf{v}_{1} \neq \mathbf{0}$.
BWOC, suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is \qquad .

Then by a previous theorem (Sec 1.7), one of the vectors can be written as a \qquad of the previous vectors.

Let p be the smallest index such that \mathbf{v}_{p+1} is a \qquad of the preceding vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$, where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are linearly independent.

Then there exists scalars $c_{1}, c_{2}, \ldots, c_{p}$, such that
$\mathbf{v}_{p+1}=$ \qquad
Multiply ($*$) by A on the left:

$$
\begin{aligned}
\Rightarrow A \mathbf{v}_{p+1} & =A c_{1} \mathbf{v}_{1}+A c_{2} \mathbf{v}_{2}+\cdots+A c_{p} \mathbf{v}_{p} \\
& =c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}+\cdots+c_{p} A \mathbf{v}_{p} \quad \text { by properties of matrix multiplication. } \\
\lambda_{p+1} \mathbf{v}_{p+1} & = \\
& (* *) \text { since } \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}, \mathbf{v}_{p+1} \text { are eigenvectors. }
\end{aligned}
$$

Now, multiply ($*$) by λ_{p+1}.

$$
\begin{aligned}
\Rightarrow \lambda_{p+1} \mathbf{v}_{p+1} & = \\
& =c_{1} \lambda_{p+1} \mathbf{v}_{1}+c_{2} \lambda_{p+1} \mathbf{v}_{2}+\cdots+c_{p} \lambda_{p+1} \mathbf{v}_{p} \quad(* * *)
\end{aligned}
$$

Subtract ($* *)-(* * *)$
$\Rightarrow \mathbf{0}=c_{1}$ (\qquad $) \mathbf{v}_{1}+c_{2}($ \qquad $) \mathbf{v}_{2}+\cdots+c_{p}($ \qquad $) \mathbf{v}_{p}$

$$
(* * * *)
$$

Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are linearly independent, each coefficient in $(* * * *)$ must be \qquad .
i.e. $c_{k}\left(\lambda_{k}-\lambda_{p+1}\right)=0$ for all $k=1,2, \ldots, p$.
$\Rightarrow \quad$ or

$$
\Rightarrow \lambda_{k}=\lambda_{p+1} \text { which is not possible, since the eigenvalues are }
$$

\qquad .

Therefore, $c_{k}=0$ for $k=1,2, \ldots, p$.
Substitution into ($*$) gives $\mathbf{v}_{p+1}=$ \qquad $*$ since it is an \qquad (and must be \qquad).

Therefore \qquad

THEOREM An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

PROOF

$\underline{\text { Theorem }}$ Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, where $p \leq n$. [Note: $p<n$ means that at least one eigenvalue has multiplicity \qquad .]
(a). The dimension of the eigenspace for an eigenvalue λ_{k} is less than or equal to the multiplicity of λ_{k}.
(b). A is diagonalizable if and only if the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.

PROOF : BYSC

EX: Determine whether A is diagonalizable if A is a 4×4 matrix with eigenvalues $\lambda=-1,3,-4,-4$, and the basis for each eigenspace, respectively, is
$\left.\mathcal{B}(\lambda=-1)=\left\{\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}, \quad \mathcal{B}(\lambda=3)=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}, \quad \mathcal{B}(\lambda=-4)=\left\{\begin{array}{l}2 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 3\end{array}\right]\right\}$

