1. Given $A=\left[\begin{array}{rr}2 & 1 \\ 4 & -1\end{array}\right]$
(a). For $\mathbf{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, compute $A \mathbf{u}$. Sketch \mathbf{u} and the resulting image $A \mathbf{u}$ on the same set of axes.
(b). For $\mathbf{v}=\left[\begin{array}{r}1 \\ -4\end{array}\right]$, compute $A \mathbf{v}$. Sketch \mathbf{v} and the resulting image $A \mathbf{v}$ on the same set of axes.
(c). What, if anything, do you notice special about either of these cases?

Def Let A be an \qquad matrix.

- An \qquad of A is a scalar λ such that $A \mathbf{x}=\lambda \mathbf{x}$ has a nontrivial solution \mathbf{x}.
- An \qquad of A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ (the eigenvalue).

Note: We say \mathbf{x} is the eigenvector associated with λ.

In the above example, $\lambda=-2$ is the eigenvector with eigenvector $\mathbf{v}=\left[\begin{array}{r}1 \\ -4\end{array}\right]$
2. Show that $\mathbf{w}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ is an eigenvector of A and determine the eigenvalue.

Question (rhetorical): Are $\lambda=-2,3$ and $\mathbf{v}=\left[\begin{array}{r}1 \\ -4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ the only eigenvalues and eigenvectors of A ? [Let's see on the next page.]

Eigenvectors are nonzero solutions to $A \mathbf{x}=\lambda \mathbf{x}$
\Rightarrow By subtracting: \qquad
\Rightarrow Factor: \qquad where I is the \qquad identity matrix.
\Rightarrow By the IMT, this equation will have a nontrivial solution if the matrix $A-\lambda I$ is \qquad .
$\Rightarrow \operatorname{det}(A-\lambda I)=$ \qquad (also by the IMT).

Steps for finding eigenvalues:
(1). Find and simplify the matrix $A-\lambda I$.
(2). Compute $\operatorname{det}(A-\lambda I)$
(3). Set $\operatorname{det}(A-\lambda I)=0$ and solve for λ.
3. Find the eigenvalues $A=\left[\begin{array}{rr}2 & 1 \\ 4 & -1\end{array}\right]$
(1). $\quad A-\lambda I=\left[\begin{array}{rr}2 & 1 \\ 4 & -1\end{array}\right]-$
(2). $|A-\lambda I|=|\quad|=$
(3).

So the \qquad eigenvalues are $\lambda=$ \qquad .

Def The scalar equation $\operatorname{det}(A-\lambda I)=0$ is called the \qquad .

Theorem A scalar λ is an eigenvalue of an $n \times n$ matrix A iff λ satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

Note: For an $n \times n$ matrix A, the characteristic equation is an \qquad -order polynomial (\qquad) and has exactly n roots if you count repeated roots and complex roots.

DEF The multiplicity of an eigenvalue λ is the number of times λ is a root of the characteristic equation.
4. Find the eigenvalues $A=\left[\begin{array}{rrrr}2 & 3 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$ and state their multiplicity.
5. Based on the last problem, complete the following theorem about triangular matrices.

Theorem The eigenvalues of an $n \times n$ triangular matrix are \qquad .
(Proof - to be done as homework)

Question: Now that we know how to find the eigenvalues, how do we find the associated eigenvectors?

Eigenvectors are nonzero solutions to $A \mathbf{x}=\lambda \mathbf{x}$, which is equivalent to \qquad .
\Rightarrow Find the nontrivial solutions to $(A-\lambda I) \mathbf{x}=\mathbf{0}$

Steps for finding eigenvectors:
(1). Find and simplify $A-\lambda I$
(2). Use row reduction to find the nontrivial solutions to $(A-\lambda I) \mathbf{x}=\mathbf{0}$.
6. Back to the first matrix $A=\left[\begin{array}{rr}2 & 1 \\ 4 & -1\end{array}\right]$, find the eigenvector(s) associated with $\lambda=3$.
(1). $A-3 I=$
(2).
7. Find the eigenvector(s) associated with $\lambda=-2$.
8. Did you get the same eigenvectors from before?
9. Are the eigenvectors unique? Why or why not?

Homework: Explain in your own words what the Null Space of a matrix A is.
Proof on p. 3
Section 5.1, p. 273: \#1, 4, 7, [11, 15, 16 Note: Eigenspace] , 17, 23, 24
Section 5.2, p. 281: \#3, 8, 9, 13, 20

