- **1.** Given $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$
- (a). For $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, compute $A\mathbf{u}$. Sketch \mathbf{u} and the resulting image $A\mathbf{u}$ on the same set of axes.

(b). For $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, compute $A\mathbf{v}$. Sketch \mathbf{v} and the resulting image $A\mathbf{v}$ on the same set of axes.

(c). What, if anything, do you notice special about either of these cases?

 $\underline{\text{Def}}$ Let A be an _____ matrix.

- An _____ of A is a scalar λ such that $A\mathbf{x} = \lambda \mathbf{x}$ has a nontrivial solution \mathbf{x} .
- An _____ of A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ (the eigenvalue).

NOTE: We say **x** is the eigenvector associated with λ .

In the above example, $\lambda = -2$ is the eigenvector with eigenvector $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$

2. Show that $\mathbf{w} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ is an eigenvector of A and determine the eigenvalue.

Question (rhetorical): Are $\lambda = -2, 3$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ the only eigenvalues and eigenvectors of A? [Let's see on the next page.]

Eigenvectors are nonzero solutions to $A\mathbf{x} = \lambda \mathbf{x}$

⇒ By subtracting:

 \Rightarrow Factor: where I is the _____ identity matrix.

 \Rightarrow By the IMT, this equation will have a nontrivial solution if the matrix $A - \lambda I$ is _______.

 $\Rightarrow \det(A - \lambda I) = \underline{\qquad}$ (also by the IMT).

Steps for finding eigenvalues:

(1). Find and simplify the matrix $A - \lambda I$.

- (2). Compute $det(A \lambda I)$
- (3). Set $det(A \lambda I) = 0$ and solve for λ .
- **3.** Find the eigenvalues $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$

(1).
$$A - \lambda I = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix} -$$

(3).

So the eigenvalues are $\lambda =$.

<u>Def</u> The scalar equation $det(A - \lambda I) = 0$ is called the

Theorem A scalar λ is an eigenvalue of an $n \times n$ matrix A iff λ satisfies the characteristic equation $\det(A - \lambda I) = 0$.

Note: For an $n \times n$ matrix A, the characteristic equation is an ______ -order polynomial (______) and has exactly n roots if you count repeated roots and complex roots.

<u>Def</u> The multiplicity of an eigenvalue λ is the number of times λ is a root of the characteristic equation.

4. Find the eigenvalues $A = \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and state their multiplicity.

5. Based on the last problem, complete the following theorem about triangular matrices.

<u>Theorem</u> The eigenvalues of an $n \times n$ triangular matrix are

(Proof – to be done as homework)

QUESTION: Now that we know how to find the eigenvalues, how do we find the associated eigenvectors?

Eigenvectors are nonzero solutions to $A\mathbf{x} = \lambda \mathbf{x}$, which is equivalent to

 \Rightarrow Find the nontrivial solutions to $(A - \lambda I)\mathbf{x} = \mathbf{0}$

Steps for finding eigenvectors:

- (1). Find and simplify $A \lambda I$
- (2). Use row reduction to find the nontrivial solutions to $(A \lambda I)\mathbf{x} = \mathbf{0}$.
- **6.** Back to the first matrix $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$, find the eigenvector(s) associated with $\lambda = 3$.
- (1). A 3I =
- **(2)**.

7. Find the eigenvector(s) associated with $\lambda = -2$.

- 8. Did you get the same eigenvectors from before?
- **9.** Are the eigenvectors unique? Why or why not?

Homework: Explain in your own words what the Null Space of a matrix A is.

Proof on p.3

Section 5.1, p. 273: #1, 4, 7, [11, 15, 16 Note: Eigenspace] , 17, 23, 24

Section 5.2, p. 281: #3, 8, 9, 13, 20