<u>DEF</u> Let V be a nonempty set on which the operation of addition and scalar¹ multiplication are defined. The set V together with these operations is called a ______ if the following 10 axioms are satisfied for \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

1. $\mathbf{u} + \mathbf{v} \in V$ 6. $c\mathbf{u} \in V$ 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ 4. There exists $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$ 5. For each $\mathbf{u} \in V$, there exist $-\mathbf{u} \in V$
such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ 10. $1\mathbf{u} = \mathbf{u}$

The elements of V (e.g. $\mathbf{u}, \mathbf{v}, \ldots$) are called ______.

<u>Ex</u>: Let P_n denote the set of all polynomials of degree n or less. Verify that P_n is a vector space.

i.e.
$$\mathbf{p} = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$
, $\mathbf{q} = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$ and $\mathbf{r} = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$
Then

1.
$$\mathbf{p} + \mathbf{q} =$$

2. $\mathbf{p} + \mathbf{q} = \mathbf{q} + \mathbf{p}$
3. $(\mathbf{p} + \mathbf{q}) + \mathbf{r} = \mathbf{p} + (\mathbf{q} + \mathbf{r})$ \checkmark LHS = RHS = $(a_0 + b_0 + c_0) + (a_1 + b_1 + c_1)x + (a_2 + b_2 + c_2)x^2 + ... + (a_n + b_n + c_n)x^n$
4. Let Then $\mathbf{p} + \mathbf{0} = a_0 + a_1x + a_2x^2 + ... + a_nx^n + 0 = \mathbf{p}$ \checkmark
5. Let $-\mathbf{p} = -a_0 + (-a_1)x + (-a_2)x^2 + ... + (-a_n)x^n$ which is in P_n . Then $\mathbf{p} + (-\mathbf{p}) = 0 = \mathbf{0}$ \checkmark
6. $c\mathbf{p} = ca_0 + ca_1x + ca_2x^2 + ... + ca_nx^n$ which is in P_n \checkmark
7. $c(\mathbf{p} + \mathbf{q}) = c\mathbf{p} + c\mathbf{q}$ \checkmark since $c[(a_0 + b_0) + (a_1 + b_1)x + ... + (a_n + b_n)x^n] = c[a_0 + a_1x + ... + a_nx^n] + c[b_0 + b_1x + ... + b_nx^n]$
8. $(c + d)\mathbf{p} = c\mathbf{p} + d\mathbf{p}$ \checkmark since $(c + d)[a_0 + a_1x + ... + a_nx^n] = c[a_0 + a_1x + ... + a_nx^n] + d[a_0 + a_1x + ... + a_nx^n]$
9. $c(d\mathbf{p}) = (cd)\mathbf{p}$ \checkmark ...
10. $\mathbf{lu} = \mathbf{u}$ \checkmark ...

¹If the scalars are real numbers, it is a **real vector space**. If the scalars are complex numbers, it is a **complex vector space**.

<u>Ex</u>: Fill in the missing axioms for the following proof that $c\mathbf{0} = \mathbf{0}$ for every scalar c.

$$c\mathbf{0} = c(\mathbf{0} + \mathbf{0})$$

= $c\mathbf{0} + c\mathbf{0}$
$$c\mathbf{0} + (-c\mathbf{0}) = (c\mathbf{0} + c\mathbf{0}) + (-c\mathbf{0})$$

$$c\mathbf{0} + (-c\mathbf{0}) = c\mathbf{0} + (c\mathbf{0} + -c\mathbf{0})$$

$$\mathbf{0} = c\mathbf{0} + \mathbf{0}$$

$$\mathbf{0} = c\mathbf{0}$$

<u>Ex</u>: Using the definition, axioms, and previous theorem(s) (and properties of real numbers) prove: If $c\mathbf{u} = \mathbf{0}$ for some nonzero scalar c, then $\mathbf{u} = \mathbf{0}$

<u>Ex</u>: Show that $W = \{(s, 2s + 1) \in \mathbb{R}^2 \mid s \in \mathbb{R}\}$ is not a vector space.

<u>DEF</u> A of a vector space V is a subset H of V that satisfies the following properties:

- **0**. H is a subset of V
- **1.** $\mathbf{0} \in H$ [Alternatively, require H to be nonempty. See footnote in book after definition (p. 193)]
- **2**. For **u** and $\mathbf{v} \in H$, then $\mathbf{u} + \mathbf{v} \in H$
- **3**. For $\mathbf{u} \in H$ and a scalar $c, c\mathbf{u} \in H$.

H is a subspace of V is denoted

<u>EX</u> Show that $H = \{0\}$ is a subspace of V for any vector space V.

Question: Is V itself a subspace of V?

Question: Is \mathbb{R}^2 a subspace of \mathbb{R}^3 ? Why or why not?

EX Let
$$H = \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
. Is H a subspace of \mathbb{R}^3 ?

EX Let
$$H = \left\{ \begin{bmatrix} a \\ b \\ -a \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
. Is H a subspace of \mathbb{R}^3 ?

Homework: Section 4.1, p. 195: #1, 3, 5, 7, 8, 19, 21, 25, 27, 29