Def Let V be a nonempty set on which the operation of addition and scalar ${ }^{1}$ multiplication are defined. The set V together with these operations is called a \qquad if the following 10 axioms are satisfied for \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d.

1. $\mathbf{u}+\mathbf{v} \in V$
2. $c \mathbf{u} \in V$
3. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
4. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
5. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
6. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
7. There exists $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
8. For each $\mathbf{u} \in V$, there exist $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $1 u=u$

The elements of $V($ e.g. $\mathbf{u}, \mathbf{v}, \ldots)$ are called \qquad .

Ex: Let P_{n} denote the set of all polynomials of degree n or less. Verify that P_{n} is a vector space.
i.e. $\mathbf{p}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}, \quad \mathbf{q}=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n} \quad$ and $\quad \mathbf{r}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}$

Then

1. $\mathbf{p}+\mathrm{q}=$
2. $\mathbf{p}+\mathbf{q}=\mathbf{q}+\mathrm{p}$
3. $(\mathbf{p}+\mathbf{q})+\mathbf{r}=\mathbf{p}+(\mathbf{q}+\mathbf{r}) \quad \sqrt{ } \quad$ LHS $=$ RHS $=\left(a_{0}+b_{0}+c_{0}\right)+\left(a_{1}+b_{1}+c_{1}\right) x+\left(a_{2}+b_{2}+c_{2}\right) x^{2}+\ldots+\left(a_{n}+b_{n}+c_{n}\right) x^{n}$
4. Let Then $\mathbf{p}+\mathbf{0}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+0=\mathbf{p} \quad \sqrt{ }$
5. Let $-\mathbf{p}=-a_{0}+\left(-a_{1}\right) x+\left(-a_{2}\right) x^{2}+\ldots+\left(-a_{n}\right) x^{n}$ which is in P_{n}. Then $\mathbf{p}+(-\mathbf{p})=0=\mathbf{0} \quad \sqrt{ }$
6. $c \mathbf{p}=c a_{0}+c a_{1} x+c a_{2} x^{2}+\ldots+c a_{n} x^{n}$ which is in $P_{n} \quad \sqrt{ }$
7. $c(\mathbf{p}+\mathbf{q})=c \mathbf{p}+c \mathbf{q} \quad \sqrt{ } \quad$ since $c\left[\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\ldots+\left(a_{n}+b_{n}\right) x^{n}\right]=c\left[a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right]+c\left[b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right]$
8. $(c+d) \mathbf{p}=c \mathbf{p}+d \mathbf{p} \quad \sqrt{ } \quad$ since $(c+d)\left[a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right]=c\left[a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right]+d\left[a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right]$
9. $c(d \mathbf{p})=(c d) \mathbf{p} \quad \sqrt{ } \quad \ldots$
10. $1 \mathbf{u}=\mathbf{u} \quad \sqrt{ } \quad \ldots$
[^0]Ex: Fill in the missing axioms for the following proof that $c \mathbf{0}=\mathbf{0}$ for every scalar c.

$$
\begin{aligned}
c \mathbf{0} & =c(\mathbf{0}+\mathbf{0}) \\
& =c \mathbf{0}+c \mathbf{0} \\
c \mathbf{0}+(-c \mathbf{0}) & =(c \mathbf{0}+c \mathbf{0})+(-c \mathbf{0}) \\
c \mathbf{0}+(-c \mathbf{0}) & =c \mathbf{0}+(c \mathbf{0}+-c \mathbf{0}) \\
\mathbf{0} & =c \mathbf{0}+\mathbf{0} \\
\mathbf{0} & =c \mathbf{0}
\end{aligned}
$$

Ex: Using the definition, axioms, and previous theorem(s) (and properties of real numbers) prove: If $c \mathbf{u}=\mathbf{0}$ for some nonzero scalar c, then $\mathbf{u}=\mathbf{0}$

Ex: Show that $W=\left\{(s, 2 s+1) \in \mathbb{R}^{2} \mid s \in \mathbb{R}\right\}$ is not a vector space.

Def A \qquad of a vector space V is a subset H of V that satisfies the following properties:
0. H is a subset of V

1. $\mathbf{0} \in H \quad$ [Alternatively, require H to be nonempty. See footnote in book after definition (p. 193)]
2. For \mathbf{u} and $\mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$
3. For $\mathbf{u} \in H$ and a scalar $c, c \mathbf{u} \in H$.
H is a subspace of V is denoted

EX Show that $H=\{\mathbf{0}\}$ is a subspace of V for any vector space V.

Question: Is V itself a subspace of V ?

Question: Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ? Why or why not?

EX Let $H=\left\{\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]: a, b \in \mathbb{R}\right\}$. Is H a subspace of \mathbb{R}^{3} ?

EX Let $H=\left\{\left[\begin{array}{c}a \\ b \\ -a\end{array}\right]: a, b \in \mathbb{R}\right\}$. Is H a subspace of \mathbb{R}^{3} ?

[^0]: ${ }^{1}$ If the scalars are real numbers, it is a real vector space. If the scalars are complex numbers, it is a complex vector space.

