THEOREM Cramer's Rule

Let A be an $n \times n$ invertible matrix. For any **b** in \mathbb{R}^n , the unique solution **x** for the equation $A\mathbf{x} = \mathbf{b}$ has entries given by

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A} = \frac{|A_i(\mathbf{b})|}{|A|}$$

where $A_i(\mathbf{b})$ is the matrix obtained by replacing column *i* of matrix A with the vector **b**.

i.e. $A_i(\mathbf{b}) = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{b} \ \dots \ \mathbf{a}_n]$ $\uparrow \text{ column } i$

<u>PROOF</u> Let A be _____ and let $A\mathbf{x} = \mathbf{b}$ for some **b** in \mathbb{R}^n .

Claim 1: $A_i(\mathbf{b})$ can be written as the product $AI_i(\mathbf{x})$

(i.e. $A_i(\mathbf{b}) = AI_i(\mathbf{x})$ where $I_i(\mathbf{x})$ is the $n \times n$ identity matrix with the *i*th column replaced by vector \mathbf{x} .) Proof (of Claim 1):

Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ denote the ______ and $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ denote the ______.

Then

 $AI_{i}(\mathbf{x}) = A[]$ $= [A\mathbf{e}_{1} \ A\mathbf{e}_{2} \ \dots \ A\mathbf{x} \ \dots \ A\mathbf{e}_{n}]$ $= [\mathbf{a}_{1} \ \mathbf{a}_{2} \ \dots \ \mathbf{b} \ \dots \ \mathbf{a}_{n}]$ $= A_{i}(\mathbf{b}) \qquad \blacksquare (\text{Claim 1})$

Claim 2: det $I_i(\mathbf{x}) = x_i$

Proof (of Claim 2): Consider the
$$n \times n$$
 matrix $I_i(\mathbf{x}) = \begin{bmatrix} 1 & 0 & \dots & x_1 & 0 & \dots & 0 \\ 0 & 1 & \dots & x_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_i & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & x_n & 0 & \dots & 1 \end{bmatrix}$

and compute the determinant using a cofactor expansion along row i:

 $\det I_i(\mathbf{x}) = \underline{\qquad} \cdot \det(I_{n-1}) \qquad \text{since all the other elements in the row are zero.}$ $= x_i \cdot 1 \cdot 1 \qquad \qquad \text{since the determinant of any size identity matrix is 1.}$ $= x_i \quad \blacksquare(\text{Claim 2})$

over \longrightarrow

Cramer's Rule and Adjoint

Ex: Use Cramer's Rule to solve
$$\begin{array}{rrrr} -2x_1 &+ & 4x_2 &= & 7\\ 5x_1 &+ & 3x_2 &= & 2 \end{array}$$

Application of Cramer's Rule to Differential Equations

The <u>LaPlace Transform</u> $\mathcal{L}{f(t)} = \int_0^\infty e^{st} f(t) dt =$ converts a (system of) linear differential equation(s) into a (system of) linear equation(s).

 $\underline{\mathbf{Ex}}$ Applying the LaPlace Transform to the system of differential equations

$$\frac{dx}{dt} = 2x + y \qquad x(0) = 1$$
results in the following algebraic system
$$\frac{dy}{dt} = 3x + 4y \qquad y(0) = 0$$

$$(s - 2)x_1 - x_2 = 1$$

$$-3x_1 + (s - 4)x_2 = 0$$

(a). Determine the value(s) of s for which the system has a unique solution.

(b). Use Cramer's Rule to find the solution.

Note: The solution to the original differential equation is found by determining the inverse LaPlace transform of x_1 and x_2 (BYSC). But the answer is $x(t) = L^{-1} \left\{ \frac{s-4}{(s-1)(s-5)} \right\} = \frac{3}{4}e^t + \frac{1}{4}e^{5t}$ and $y(t) = L^{-1} \left\{ \frac{3}{(s-1)(s-5)} \right\} = -\frac{3}{4}e^t + \frac{3}{4}e^{5t}$

[Details BYSC]

Cramer's Rule and Adjoint

Recall the formula for finding the inverse of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$: $A^{-1} =$

Is there a similar formula for $n \times n$ matrices?

 $\underline{\mathrm{Def}}$ Let A be and $n\times n$ matrix. The _______, denoted adj A is the ________, denoted adj A is the _________.

adj $A = \begin{bmatrix} c_{11} & c_{21} & c_{31} & \cdots & c_{n1} \\ c_{12} & c_{22} & c_{32} & \cdots & c_{n2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & c_{3n} & \cdots & c_{nn} \end{bmatrix}$ where $c_{ij} =$

Note: To find the adjoint of A, replace each entry in A with ______, then ______ it.

i.e. adj ${\cal A} =$

<u>THEOREM</u> If A is an $n \times n$ invertible matrix, then $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$.

<u>PROOF</u> [See book. It comes from applying Cramer's Rule.]

<u>Ex</u>: Verify that the above theorem gives the formula for the inverse of a 2×2 matrix.

[On Board Example]

Homework (slightly different than assignment sheet): Section 3.3, p. 185: #2, 5, 7, 9, 13, 16,