Theorem Cramer's Rule

Let A be an $n \times n$ invertible matrix. For any \mathbf{b} in \mathbb{R}^{n}, the unique solution \mathbf{x} for the equation $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}=\frac{\left|A_{i}(\mathbf{b})\right|}{|A|}
$$

where $A_{i}(\mathbf{b})$ is the matrix obtained by replacing column i of matrix A with the vector \mathbf{b}.
i.e. $A_{i}(\mathbf{b})=\left[\begin{array}{llllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{b} & \ldots & \mathbf{a}_{n}\end{array}\right]$
\uparrow column i
$\underline{\text { Proof Let } A \text { be }}$ \qquad and let $A \mathbf{x}=\mathbf{b}$ for some \mathbf{b} in \mathbb{R}^{n}.

Claim 1: $A_{i}(\mathbf{b})$ can be written as the product $A I_{i}(\mathbf{x})$
(i.e. $A_{i}(\mathbf{b})=A I_{i}(\mathbf{x})$ where $I_{i}(\mathbf{x})$ is the $n \times n$ identity matrix with the $i^{\text {th }}$ column replaced by vector \mathbf{x}.) Proof (of Claim 1):

Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ denote the \qquad and $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ denote the \qquad .

Then

$$
\left.\begin{array}{rl}
A I_{i}(\mathbf{x}) & =A[\\
& =\left[\begin{array}{lllll}
A \mathbf{e}_{1} & A \mathbf{e}_{2} & \ldots & A \mathbf{x} & \ldots
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2}
\end{array}\right] \\
& \ldots \\
\mathbf{b} & \ldots
\end{array} \mathbf{a}_{n}\right]\left[\begin{array}{llll}
& \\
& =A_{i}(\mathbf{b}) & & \square(\text { Claim } 1)
\end{array}\right.
$$

Claim 2: $\operatorname{det} I_{i}(\mathbf{x})=x_{i}$
Proof (of Claim 2): Consider the $n \times n$ matrix $I_{i}(\mathbf{x})=\left[\begin{array}{rrrrrrr}1 & 0 & \ldots & x_{1} & 0 & \ldots & 0 \\ 0 & 1 & \ldots & x_{2} & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & x_{i} & 0 & \ldots & 0 \\ \vdots & \vdots & & \vdots & \ddots & & \vdots \\ 0 & 0 & \ldots & x_{n} & 0 & \ldots & 1\end{array}\right]$
and compute the determinant using a cofactor expansion along row i :

$$
\begin{aligned}
\operatorname{det} I_{i}(\mathbf{x}) & =\ldots \cdot \operatorname{det}\left(I_{n-1}\right) \quad \text { since all the other elements in the row are zero. } \\
& =x_{i} \cdot 1 \cdot 1 \quad \text { since the determinant of any size identity matrix is } 1 . \\
& =x_{i} \quad \square \text { (Claim 2) }
\end{aligned}
$$

Back to Main Proof:
From Claim 1, we have
\qquad
$\Rightarrow \operatorname{det} A_{i}(\mathbf{b})=\operatorname{det} A I_{i}(\mathbf{x}) \quad$ by taking the determinant of both sides.
$\operatorname{det} A_{i}(\mathbf{b})=\square$ by previous theorem
$\operatorname{det} A_{i}(\mathbf{b})=\operatorname{det} A \cdot x_{i} \quad$ by Claim 2

Then since \qquad we can divide to get
$\Rightarrow x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}$

Ex: Use Cramer's Rule to solve $\begin{array}{r}-2 x_{1}+4 x_{2}=7 \\ 5 x_{1}+3 x_{2}=2\end{array}$

Application of Cramer's Rule to Differential Equations
The LaPlace Transform $\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{s t} f(t) d t=$ converts a (system of) linear differential equation(s) into a (system of) linear \qquad equation(s).

Ex Applying the LaPlace Transform to the system of differential equations

$$
\begin{array}{ll}
\frac{d x}{d t}=2 x+y & x(0)=1 \\
\frac{d y}{d t}=3 x+4 y & y(0)=0
\end{array}
$$

results in the following algebraic system

$$
\begin{array}{rlrl}
(s-2) x_{1} & - & x_{2} & =1 \\
-3 x_{1}+(s-4) x_{2} & =0
\end{array}
$$

(a). Determine the value(s) of s for which the system has a unique solution.
(b). Use Cramer's Rule to find the solution.

Note: The solution to the original differential equation is found by determining the inverse LaPlace transform of x_{1} and x_{2} (BYSC). But the answer is $x(t)=L^{-1}\left\{\frac{s-4}{(s-1)(s-5)}\right\}=\frac{3}{4} e^{t}+\frac{1}{4} e^{5 t}$ and $y(t)=L^{-1}\left\{\frac{3}{(s-1)(s-5)}\right\}=-\frac{3}{4} e^{t}+\frac{3}{4} e^{5 t}$

Recall the formula for finding the inverse of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: \quad A^{-1}=$
Is there a similar formula for $n \times n$ matrices?

Def Let A be and $n \times n$ matrix. The \qquad , denoted adj A is the \qquad given by
$\operatorname{adj} A=\left[\begin{array}{rrrrr}c_{11} & c_{21} & c_{31} & \cdots & c_{n 1} \\ c_{12} & c_{22} & c_{32} & \cdots & c_{n 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{1 n} & c_{2 n} & c_{3 n} & \cdots & c_{n n}\end{array}\right]$
where $c_{i j}=$

Note: To find the adjoint of A, replace each entry in A with \qquad , then \qquad it.
i.e. $\operatorname{adj} A=$

Theorem if A is an $n \times n$ invertible matrix, then $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$.
$\underline{\text { Proof [See book. It comes from applying Cramer's Rule.] }}$

Ex: Verify that the above theorem gives the formula for the inverse of a 2×2 matrix.
[On Board Example]
Homework (slightly different than assignment sheet): Section 3.3, p. 185: \#2, 5, 7, 9, 13, 16,

