Theorem A square $n \times n$ matrix A is invertible if and only if $\operatorname{det} A \neq 0$
Before we can prove this, we need more theorems.
Theorem Let E be an $n \times n$ elementary matrix. Then $\operatorname{det} E=\left\{\begin{aligned} 1, & \text { if } E \text { is a row replacement } \\ -1, & \text { if } E \text { is a row interchange } \\ k, & \text { if } E \text { is a row scaled by } k\end{aligned}\right.$
$\underline{\text { Proof }}$ Let E be an $n \times n$ elementary matrix.
$\underline{\text { Basis (n=2) }}: I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(a). For row replacement, there are only 2 possible elementary matrices:
$k R_{2}+R_{1} \rightarrow R_{1}: E_{1}=[\quad]$ and $k R_{1}+R_{2} \rightarrow R_{2}: E_{2}=[\square$
Then $\operatorname{det} E_{1}=$ \qquad and $\operatorname{det} E_{2}=(1)(1)-(0)(k)=1 \sqrt{ }$
(b). For row interchange, the only elementary matrix is $E=[\square$

Then $\operatorname{det} E_{1}=$ \qquad $\sqrt{ }$
(c). For row scaling by k, there are only 2 possible elementary matrices:
$E_{1}=[\quad]$ and $E_{2}=[\square$
Then $\operatorname{det} E_{1}=$ \qquad and $\operatorname{det} E_{2}=$ \qquad \checkmark

Induction:

Assume true for $n=k$.
ie. $\operatorname{det} E=\left\{\begin{aligned} 1, & \text { if } E \text { is a row replacement } \\ -1, & \text { if } E \text { is a row interchange } \\ k, & \text { if } E \text { is a row scaled by } k\end{aligned}\right.$ \qquad . [Show true for an $(k+1) \times(k+1)$ matrix.]

Since elementary row operations only affect 1 or 2 rows, compute the determinant by a cofactor expansion along
\qquad , call it row i.

This row is given by $\left[\begin{array}{llllllllll}0 & 0 & \ldots & 0 & 0 & 1 & 0 & 0 & \ldots & 0\end{array}\right]$, where the 1 is in the $i^{\text {th }}$ position.
So by cofactor expansion,

$$
\begin{aligned}
\operatorname{det} E & =\quad \text { where } E_{i i} \text { is the } \quad \text { submatrix with row } i \text { and column } i \text { deleted. } \\
& =(-1)^{2 i} \operatorname{det}\left(E_{i i}\right) \\
& =\operatorname{det}\left(E_{i i}\right) \\
& =\left\{\begin{aligned}
1, & \text { if } E_{i i} \text { is a row replacement } \\
-1, & \text { if } E_{i i} \text { is a row interchange } \\
k, & \text { if } E_{i i} \text { is a row scaled by } k
\end{aligned} \quad\right. \text { by }
\end{aligned}
$$

i.e., it is true for $n=k+1$. Therefore, by mathematical induction it is true for all $n \times n$ elementary matrices.

Theorem If A is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then
$\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)=\left\{\begin{aligned} \operatorname{det}(A), & \text { if row replacement } \\ -\operatorname{det}(A), & \text { if row interchange } \\ k \operatorname{det}(A), & \text { if row scaled by } k\end{aligned}\right.$
Note: This is Theorem 3 on p. 169, with B written as $E A$. See book for proof.

Ex: $A=\left[\begin{array}{rr}2 & 4 \\ 1 & -5\end{array}\right] \quad \operatorname{det} A=$
$-2 R_{2}+R_{1} \rightarrow R_{1}: \quad B_{1}=$
$R_{2} \leftrightarrow R_{1}: \quad B_{2}=$
$-3 R_{2} \rightarrow R_{2}: \quad B_{3}=$

Theorem If A is an $n \times n$ matrix that is reduced to echelon form U using only row interchanges and row replacements. Then

$$
\begin{aligned}
\operatorname{det} A & =(-1)^{r} \operatorname{det} U \quad \text { where } r \text { is the number of row interchanges used. } \\
& =(-1)^{r} \quad \text { (i.e. } \\
& \text { since the echelon form is always upper triangular. }
\end{aligned}
$$

Ex: Reduce the following matrix to echelon form and compute the determinant. Compare with computing the determinant by cofactor expansion.

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
1 & 3 & -2 \\
0 & 1 & 2
\end{array}\right]
$$

