1. Find the inverse of $A=\left[\begin{array}{rrr}1 & 3 & 0 \\ -1 & -4 & 1 \\ 2 & 0 & 12\end{array}\right]$, if it exists.
$\left[\begin{array}{rrr|rrr}1 & 3 & 0 & 1 & 0 & 0 \\ -1 & -4 & 1 & 0 & 1 & 0 \\ 2 & 0 & 12 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 3 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 1 & 0 \\ 0 & -6 & 12 & -2 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 3 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & -1 & 0 \\ 0 & 6 & -12 & 2 & 0 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 3 & 4 & 3 & 0 \\ 0 & 1 & -1 & -1 & -1 & 0 \\ 0 & 0 & -6 & 8 & 6 & -1\end{array}\right]$
$\rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 3 & 4 & 3 & 0 \\ 0 & 1 & -1 & -1 & -1 & 0 \\ 0 & 0 & 1 & -4 / 3 & -1 & 1 / 6\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 8 & 6 & -1 / 2 \\ 0 & 1 & 0 & -7 / 3 & -2 & 1 / 6 \\ 0 & 0 & 1 & -4 / 3 & -1 & 1 / 6\end{array}\right] \quad$ So $A^{-1}=\left[\begin{array}{rrr}8 & 6 & -1 / 2 \\ -7 / 3 & -2 & 1 / 6 \\ -4 / 3 & -1 & 1 / 6\end{array}\right]$
But why does this method work? [Rhetorical Question... By the end of this worksheet, you will have proved why it works.]

DEF An elementary matrix E is one that is obtained by performing \qquad on the Identity matrix.

Ex:

$$
\begin{array}{lll}
I & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{2} \leftrightarrow R_{3} & \Rightarrow \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { Elementary Matrix } E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad-2 R_{1} \leftrightarrow R_{1}+R_{2} \leftrightarrow R_{2} \Rightarrow \text { Elementary Matrix } E_{2}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Ex: Given a general 3×3 matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and the three elementary matrices defined above, compute the following products.
(a). $E_{1} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
(b). $E_{2} A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
(c). $E_{3} A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$

Which elementary row operation transforms A into the resulting $E_{1} A, E_{2} A, E_{3} A$, respectively?

How do these elementary row operations compare with the ones used to transform I into E_{1}, E_{2}, E_{3}, respectively?

FACT The result of performing an elementary row operation on a $m \times n$ matrix A can be written as the product
\qquad where E is the $m \times m$ elementary matrix corresponding to performing \qquad the same row operation on the identity matrix I_{m}.
[Given w/o proof - but should be clear from previous example.]

FACT Each elementary matrix is invertible. [Given w/o proof - but E^{-1} is clearly found by performing the operation necessary to take E back to the identity I.]

Theorem An $n \times n$ matrix is invertible if and only if A is row equivalent to I_{n}.
$\underline{\text { Proof }} \Rightarrow$: Let A be an \quad invertible_ $n \times n$ matrix.
[Show that it is row equivalent to I_{n}.
i.e. Show that the unique RREF is \qquad .]

Then for each \qquad in $\mathbb{R}^{n}, A \mathbf{x}=\mathbf{b}$ has a (unique) solution (by Theorem \qquad 5 on p. 104).

Thus, A has a pivot in every row, so there are n pivots.
Since A is $n \times n$, there are pivots in each column , as well.
Thus the n pivot positions are along the diagonal.
Therefore, the reduced echelon form of A is I_{n}, i.e. $A \sim I_{n}$.
$\Leftarrow:$ [Stop here. We will prove this direction together in class.]

Note: From the previous proof, we saw that the sequence of row operations that reduce A to I can be written in the product form $\quad\left(E_{p} \ldots E_{2} E_{1}\right) A=I \quad$ for the elementary matrices $E_{1}, E_{2}, \ldots, E_{p}$ corresponding to the row operations in order $1,2, \ldots, p$.

Corollary If A is an invertible $n \times n$ matrix, then any sequence of elementary row operations that reduces A to I_{n} will also transform I_{n} to A^{-1}.
$\underline{\text { Proof }}$ Since A is invertible, we have by the previous theorem that $A=$ \qquad $\left(E_{p} \cdots E_{2} E_{1}\right)^{-1}$ for some set of elementary matrices corresponding to a sequence of elementary row operations.

Taking the inverse of both sides

$$
\begin{aligned}
A^{-1} & =\left(\left(E_{p} \cdots E_{2} E_{1}\right)^{-1}\right)^{-1} \\
& =E_{p} \cdots E_{2} E_{1} \quad \text { since the inverse of an inverse matrix returns the original matrix. }
\end{aligned}
$$

Since multiplying by the identity I_{n} does not change the matrix, multiply the RHS by I_{n} to obtain
$\underline{A^{-1}}=\left(E_{p} \cdots E_{2} E_{1}\right) I_{n}$.
In other words, the same sequence of elementary row operations applied in the order \qquad $E_{1}, E_{2}, \ldots E_{p}$, which reduce A to I_{n} will reduce I_{n} to $\quad A^{-1}$.
[Note: This corollary proves why $[A \mid I] \rightarrow\left[I \mid A^{-1}\right]$.

