1. Find the inverse of $A =$	$\begin{bmatrix} 1 & 3 & 0 \\ -1 & -4 & 1 \\ 2 & 0 & 12 \end{bmatrix}$, if it exists.	
$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \Rightarrow \begin{bmatrix} 1 & 3 & 0 & & 1 & 0 & 0 \\ 0 & -1 & 1 & & 1 & 1 & 0 \\ 0 & -6 & 12 & & -2 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 0 & & 1 \\ 0 & 1 & -1 & & -1 \\ 0 & 6 & -12 & & 2 \end{bmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\longrightarrow \left[\begin{array}{ccc c} 1 & 0 & 3 & 4 & 3\\ 0 & 1 & -1 & -1 & -1\\ 0 & 0 & 1 & -4/3 & -1 \end{array} \right]$	$ \begin{bmatrix} 0 \\ 0 \\ 1/6 \end{bmatrix} \longrightarrow \left[\begin{array}{ccccc} 1 & 0 & 0 & 8 & 6 & -1/2 \\ 0 & 1 & 0 & -7/3 & -2 & 1/6 \\ 0 & 0 & 1 & -4/3 & -1 & 1/6 \end{array} \right] $	So $A^{-1} = \begin{bmatrix} 8 & 6 & -1/2 \\ -7/3 & -2 & 1/6 \\ -4/3 & -1 & 1/6 \end{bmatrix}$

But why does this method work? [Rhetorical Question... By the end of this worksheet, you will have proved why it works.]

 $\underline{\text{DEF}}$ An **elementary matrix** E is one that is obtained by performing a single elementary row operation on the Identity matrix.

$$\underline{Ex}: I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_2 \leftrightarrow R_3 \qquad \Rightarrow \quad \text{Elementary Matrix } E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \\
I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad 3R_1 \leftrightarrow R_1 \qquad \Rightarrow \quad \text{Elementary Matrix } E_2 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad -2R_3 + R_2 \leftrightarrow R_2 \quad \Rightarrow \quad \text{Elementary Matrix } E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

<u>Ex</u>: Given a general 3×3 matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and the three elementary matrices defined above, compute the following products.

(a).
$$E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

(b). $E_2 A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$
(c). $E_3 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

[Go on to answer the next two questions (any maybe start filling in the blanks of the Facts and Proof).]

Which elementary row operation transforms A into the resulting E_1A , E_2A , E_3A , respectively?

How do these elementary row operations compare with the ones used to transform I into E_1, E_2, E_3 , respectively?

<u>FACT</u> Each elementary matrix is invertible. [Given w/o proof – but E^{-1} is clearly found by performing the operation necessary to take E back to the identity I.]

<u>Theorem</u> An $n \times n$ matrix is invertible if and only if A is row equivalent to I_n .			
<u>PROOF</u> \Rightarrow : Let A be an <u>invertible</u> $n \times n$ matrix.	[Show that it is row equivalent to I_n .		
i.e. Show t	that the unique RREF is $\underline{I_n}$.]		
Then for each <u>b</u> in \mathbb{R}^n , $A\mathbf{x} = \mathbf{b}$ has a (unique) solution (by Theorem	5 on p. 104).		
Thus, A has a <u>pivot</u> in every row, so there are n pivots.			
Since A is $n \times n$, there are pivots in <u>each column</u> , as well.			
Thus the n pivot positions are along the diagonal.			
Therefore, the <u>reduced echelon</u> form of A is I_n , i.e. $A \sim I_n$.			

 $\Leftarrow:$ [Stop here. We will prove this direction together in class.]

<u>NOTE</u>: From the previous proof, we saw that the sequence of row operations that reduce A to I can be written in the product form $(E_p \dots E_2 E_1)A = I$ for the elementary matrices E_1, E_2, \dots, E_p corresponding to the row operations in order $1, 2, \dots, p$.

<u>COROLLARY</u> If A is an invertible $n \times n$ matrix, then any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1} .

<u>PROOF</u> Since A is invertible, we have by the previous theorem that $A = (E_p \cdots E_2 E_1)^{-1}$ for some set of elementary matrices corresponding to a sequence of elementary row operations.

Taking the inverse of both sides

 $A^{-1} = ((E_p \cdots E_2 E_1)^{-1})^{-1}$ \Rightarrow

= $E_p \cdots E_2 E_1$ since the inverse of an inverse matrix returns the original matrix.

Since multiplying by the identity I_n does not change the matrix, multiply the RHS by I_n to obtain

$$\underline{A^{-1}} = (E_p \cdots E_2 E_1) I_n.$$

In other words, the same sequence of elementary row operations applied in the order $E_1, E_2, \ldots E_p$, which reduce A to I_n will reduce I_n to A^{-1} .

[<u>NOTE</u>: This corollary proves why $[A|I] \rightarrow [I|A^{-1}]$.