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1. Find the inverse of A =

 1 3 0
−1 −4 1
2 0 12

, if it exists.
 1 3 0 1 0 0

−1 −4 1 0 1 0
2 0 12 0 0 1

−−→

 1 3 0 1 0 0
0 −1 1 1 1 0
0 −6 12 −2 0 1

−−→

 1 3 0 1 0 0
0 1 −1 −1 −1 0
0 6 −12 2 0 −1

−−→

 1 0 3 4 3 0
0 1 −1 −1 −1 0
0 0 −6 8 6 −1



−−→

 1 0 3 4 3 0
0 1 −1 −1 −1 0
0 0 1 −4/3 −1 1/6

−−→

 1 0 0 8 6 −1/2
0 1 0 −7/3 −2 1/6
0 0 1 −4/3 −1 1/6

 So A−1 =

 8 6 −1/2
−7/3 −2 1/6
−4/3 −1 1/6


But why does this method work? [Rhetorical Question... By the end of this worksheet, you will have proved why it works.]

Def An elementary matrix E is one that is obtained by performing a single elementary row operation
on the Identity matrix.

Ex:

I =

1 0 0
0 1 0
0 0 1

 R2 ↔ R3 ⇒ Elementary Matrix E1 =

1 0 0
0 0 1
0 1 0



I =

1 0 0
0 1 0
0 0 1

 3R1 ↔ R1 ⇒ Elementary Matrix E2 =

3 0 0
0 1 0
0 0 1



I =

1 0 0
0 1 0
0 0 1

 −2R3 +R2 ↔ R2 ⇒ Elementary Matrix E3 =

1 0 0
0 1 −2
0 0 1


Ex: Given a general 3× 3 matrix A =

a b c
d e f
g h i

 and the three elementary matrices defined above, compute the following products.

(a). E1A =

1 0 0
0 0 1
0 1 0

a b c
d e f
g h i



(b). E2A =

3 0 0
0 1 0
0 0 1

a b c
d e f
g h i



(c). E3A =

1 0 0
0 1 −2
0 0 1

a b c
d e f
g h i


[Go on to answer the next two questions (any maybe start filling in the blanks of the Facts and Proof).]
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Which elementary row operation transforms A into the resulting E1A,E2A,E3A, respectively?

How do these elementary row operations compare with the ones used to transform I into E1, E2, E3, respectively?

Fact The result of performing an elementary row operation on a m× n matrix A can be written as the product
EA where E is the m×m elementary matrix corresponding to performing the same row operation

on the identity matrix Im. [Given w/o proof – but should be clear from previous example.]

Fact Each elementary matrix is invertible. [Given w/o proof – but E−1 is clearly found by performing the operation

necessary to take E back to the identity I.]

Theorem An n× n matrix is invertible if and only if A is row equivalent to In.

Proof ⇒: Let A be an invertible n× n matrix. [Show that it is row equivalent to In.

i.e. Show that the unique RREF is In .]

Then for each b in Rn, Ax = b has a (unique) solution (by Theorem 5 on p. 104 ).

Thus, A has a pivot in every row, so there are n pivots.

Since A is n× n, there are pivots in each column , as well.

Thus the n pivot positions are along the diagonal.

Therefore, the reduced echelon form of A is In, i.e. A ∼ In.

⇐: [Stop here. We will prove this direction together in class.]
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Note: From the previous proof, we saw that the sequence of row operations that reduce A to I can be written
in the product form (Ep . . . E2E1)A = I for the elementary matrices E1, E2, . . . , Ep corresponding to the
row operations in order 1, 2, . . . , p.

Corollary If A is an invertible n×n matrix, then any sequence of elementary row operations that reduces A to
In will also transform In to A−1.

Proof Since A is invertible, we have by the previous theorem that A = (Ep · · ·E2E1)
−1

for some set of elementary matrices corresponding to a sequence of elementary row operations.

Taking the inverse of both sides

⇒
A−1 =

(
(Ep · · ·E2E1)

−1
)−1

= Ep · · ·E2E1 since the inverse of an inverse matrix returns the original matrix.

Since multiplying by the identity In does not change the matrix, multiply the RHS by In to obtain

A−1 = (Ep · · ·E2E1)In.

In other words, the same sequence of elementary row operations applied in the order E1, E2, . . . Ep , which

reduce A to In will reduce In to A−1 . �

[Note: This corollary proves why [A|I] → [I|A−1].


