$\underline{\textsc{Theorem}}$ Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be matrices of the same size and let r, s be scalars. Then

(a). $A + B = B + A$	commutative
(b). $(A+B) + C = A + (B+C)$	associative
(c). $A + 0 = A$	additive identity
(d). $r(A+B) = rA + rB$	distributive
(e). $(r+s)A = rA + sA$	distributive
(f). $r(sA) = (rs)A$	associative

Proof of (d).

THEOREM Properties of Matrix Multiplication

Let A be an $m \times n$ matrix and let B and C be matrices whose sizes make indicated products and sums defined. Let r be a scalar. Then

(a). $A(BC) = (AB)C$	associative
(b) . $A(B+C) = AB + AC$	left distributive
(c). $(B+C)A = BA + CA$	right distributive
(d). $r(AB) = (rA)B = A(rB)$	scalar associative/commutative
(e). $I_m A = A = A I_n$	multiplicative identity

Notes:

Proof of (a).

Proof of (e).

<u>THEOREM</u> Properties of Transposed Matrices

Let A and B be matrices whose sizes make indicated products and sums defined. Let r be a scalar. Then

- (a). $(A^T)^T = A$
- **(b)**. $(A+B)^T = A^T + B^T$
- (c). $(rA)^T = rA^T$
- (d). $(AB)^T = B^T A^T$

Proof of (a).

Proof of (d).