Theorem Properties of Matrix Addition and Scalar Multiplication
Let A, B, and C be matrices of the same size and let r, s be scalars. Then

(a). $A+B=B+A$	commutative
(b) $\cdot(A+B)+C=A+(B+C)$	associative
(c) $\cdot A+0=A$	additive identity
(d) $\cdot r(A+B)=r A+r B$	distributive
(e) $\cdot(r+s) A=r A+s A$	distributive
(f). $r(s A)=(r s) A$	associative

Proof of (d).

Theorem Properties of Matrix Multiplication
Let A be an $m \times n$ matrix and let B and C be matrices whose sizes make indicated products and sums defined. Let r be a scalar. Then
(a). $A(B C)=(A B) C \quad$ associative
(b). $A(B+C)=A B+A C$
left distributive
(c). $(B+C) A=B A+C A$
(d). $r(A B)=(r A) B=A(r B)$
(e). $I_{m} A=A=A I_{n}$

Notes:

Proof of (a).

Proof of (e).

Theorem Properties of Transposed Matrices
Let A and B be matrices whose sizes make indicated products and sums defined. Let r be a scalar. Then
(a). $\left(A^{T}\right)^{T}=A$
(b). $(A+B)^{T}=A^{T}+B^{T}$
(c). $(r A)^{T}=r A^{T}$
(d). $(A B)^{T}=B^{T} A^{T}$

Proof of (a).

Proof of (d).

