1. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is one-to-one if and only if $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

PROOF Let T be defined as above. \implies : Let T be one-to-one. [Show that $T(\mathbf{x}) = \mathbf{0}$ has _____.] By definition of one-to-one, if **b** is in \mathbb{R}^m , then there is at most one solution **x** in \mathbb{R}^n such that Specifically, since the zero vector $\mathbf{0}$ is in _____ and T is one-to-one, there is _____ solution \mathbf{x} in \mathbb{R}^n such that . [By the definition of one-to-one] Since T is linear, _____ is always a solution to $T(\mathbf{x}) = \mathbf{0}$. i.e. $T(\mathbf{0}) = \mathbf{0}$. Since there is solution, $\mathbf{x} = \mathbf{0}$ is the *only* solution. \Leftarrow : Let $T(\mathbf{x}) = \mathbf{0}$ have only the trivial solution. [Show that T is one-to-one.] BWOC, suppose ______. Then there exists a vector **b** in \mathbb{R}^m and two ______ vectors **u** and **v** such that $T(\mathbf{u}) = \mathbf{b}$ and $T(\mathbf{v}) = \mathbf{b}$. Then $T(\mathbf{u} - \mathbf{v}) =$ since T is linear. $= \mathbf{b} - \mathbf{b}$ = 0 i.e. $T(\mathbf{u} - \mathbf{v}) = \mathbf{0}$, which has only the ______ solution [by the given statement (see \Leftarrow :)]. So $\mathbf{u} - \mathbf{v} = \mathbf{0}$ is this trivial solution. \Rightarrow _____ \rightarrow

Therefore, T must be one-to-one.

One-to-One and Onto Transformations

- **2.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined as $T(\mathbf{x}) = A\mathbf{x}$. Then
- (a). T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m .
- (b). T is one-to-one iff the columns of A are linearly independent.

<u>PROOF</u> Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined as $T(\mathbf{x}) = A\mathbf{x}$

(a). By a previous theorem (sec 1.4),

the columns of A span \mathbb{R}^m iff for ______ the equation $A\mathbf{x} = \mathbf{b}$ has a ______ (i.e. at least one solution).

But since $A\mathbf{x} = \mathbf{b}$ is equivalent to the equation ______, the statement becomes:

The columns of A span \mathbb{R}^m iff for each **b** in \mathbb{R}^m the equation has at least one solution.

Therefore, by definition of ______, T is onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m .

(b). From sec. 1.7, the columns of A are linearly independent iff $A\mathbf{x} = \mathbf{0}$ has .

 \Rightarrow The columns of A are linearly independent iff has only the trivial solution.

From the previous theorem, T is _____ iff $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Therefore, combining the last 2 statements:

T is one-to-one iff the columns of A are \$. \blacksquare

[Now we can complete the Invertible Matrix Theorem.]