1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. T is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof Let T be defined as above.
\Longrightarrow : Let T be one-to-one.
[Show that $T(\mathbf{x})=\mathbf{0}$ has \qquad .]

By definition of one-to-one, if \mathbf{b} is in \mathbb{R}^{m}, then there is at most one solution \mathbf{x} in \mathbb{R}^{n} such that \qquad

Specifically, since the zero vector $\mathbf{0}$ is in \qquad and T is one-to-one,
there is \qquad solution \mathbf{x} in \mathbb{R}^{n} such that \qquad .
[By the definition of one-to-one]

Since T is linear, \qquad is always a solution to $T(\mathbf{x})=\mathbf{0}$. i.e. $T(\mathbf{0})=\mathbf{0}$.

Since there is \qquad solution, $\mathbf{x}=\mathbf{0}$ is the only solution.
\Longleftarrow : Let $T(\mathbf{x})=\mathbf{0}$ have only the trivial solution.

BWOC, suppose \qquad .

Then there exists a vector \mathbf{b} in \mathbb{R}^{m} and two \qquad vectors \mathbf{u} and \mathbf{v} such that $T(\mathbf{u})=\mathbf{b}$ and $T(\mathbf{v})=\mathbf{b}$.

Then

$$
\begin{aligned}
T(\mathbf{u}-\mathbf{v}) & =\square \quad \text { since } T \text { is linear. } \\
& =\mathbf{b}-\mathbf{b} \\
& =\mathbf{0}
\end{aligned}
$$

i.e. $T(\mathbf{u}-\mathbf{v})=\mathbf{0}$, which has only the \qquad solution [by the given statement (see \Longleftarrow :)].

So $\mathbf{u}-\mathbf{v}=\mathbf{0}$ is this trivial solution.
\Rightarrow \qquad \cdots

Therefore, T must be one-to-one.
2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation defined as $T(\mathbf{x})=A \mathbf{x}$. Then
(a). T maps \mathbb{R}^{n} onto \mathbb{R}^{m} iff the columns of A span \mathbb{R}^{m}.
(b). T is one-to-one iff the columns of A are linearly independent.

Proof Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation defined as $T(\mathbf{x})=A \mathbf{x}$
(a). By a previous theorem (sec 1.4),
the columns of A span \mathbb{R}^{m} iff for \qquad the equation $A \mathbf{x}=\mathbf{b}$ has a \qquad (i.e. at least one solution).

But since $A \mathbf{x}=\mathbf{b}$ is equivalent to the equation \qquad , the statement becomes:

The columns of A span \mathbb{R}^{m} iff for each \mathbf{b} in \mathbb{R}^{m} the equation \qquad has at least one solution.

Therefore, by definition of \qquad , T is onto \mathbb{R}^{m} iff the columns of A span \mathbb{R}^{m}.
(b). From sec. 1.7, the columns of A are linearly independent iff $A \mathbf{x}=\mathbf{0}$ has \qquad .
\Rightarrow The columns of A are linearly independent iff \qquad has only the trivial solution.

From the previous theorem, T is \qquad iff $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Therefore, combining the last 2 statements:
T is one-to-one iff the columns of A are \qquad .

