1. A set of p vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.

PROOF

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ be in \mathbb{R}^{n} where $p>n$. Then let $A=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{p}\end{array}\right]$, which is a matrix of size \qquad .
Since A has \qquad rows, there can be at most \qquad pivots, which is less than the number of columns.

Then there must be a \qquad corresponding to each of the columns without a pivot.

Thus, $A \mathbf{x}=\mathbf{0}$ has a \qquad .

Therefore the columns of A are linearly dependent (by (3) on p. 57).
[Make sure you understand how this equation (3) relates to the definitions of linear dependence and independence.]
2. If a set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} contains the zero vector, then the set is linearly dependent.

PROOF

Let S be defined as above.
WLOG, suppose $\mathbf{v}_{1}=$ \qquad
Let $c_{1} \neq 0$ and $c_{2}, c_{3}, \ldots, c_{p}=0$.
Then

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{p} \mathbf{v}_{p} & =c_{1} \mathbf{v}_{1}+\ldots \mathbf{v}_{2}+\ldots \mathbf{v}_{3}+\ldots+\ldots \\
& =c_{1} \mathbf{0}+\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0} \quad \text { since } \mathbf{v}_{1}=\ldots \quad \text { and scalar multiplication. } \\
& =\mathbf{0}
\end{aligned}
$$

Therefore, the set is linearly dependent since there exists a \qquad , namely c_{1}, such that
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{p} \mathbf{v}_{p}=\mathbf{0}$.
3. A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors in linearly dependent iff at least one of the vectors in S is a linear combination of the other vectors.

PRoof

Let S be defined as above.
\Longrightarrow : Done in class
\Longleftarrow : Let one vector be a \qquad of the other vectors.
i.e. \exists \qquad such that $\mathbf{v}_{k}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k-1} \mathbf{v}_{k-1}+c_{k+1} \mathbf{v}_{k+1}+\ldots+c_{p} \mathbf{v}_{p}$
By subtraction $\mathbf{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k-1} \mathbf{v}_{k-1}$ \qquad $+c_{k+1} \mathbf{v}_{k+1}+\ldots+c_{p} \mathbf{v}_{p}$
So the weight $c_{k}=$ \qquad .

Which means at least one weight is \qquad such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{p} \mathbf{v}_{p}=\mathbf{0}$.
Therefore, by definition, S is \qquad .

Corollary If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent and $\mathbf{v}_{1} \neq \mathbf{0}$ then there exists \mathbf{v}_{j} in S with $j>1$ such that \mathbf{v}_{j} is a linear combination of the preceding vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{j-1}$.

PROOF
[Feel free to start, but Dr. Crawford will do this one.]

