1. A set of p vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

Proof

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be in \mathbb{R}^n where p > n. Then let $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_p]$, which is a matrix of size .

Since A has _____ rows, there can be at most _____ pivots, which is less than the number of columns.

Then there must be a ______ corresponding to each of the columns without a pivot.

Thus, $A\mathbf{x} = \mathbf{0}$ has a ______.

Therefore the columns of A are linearly dependent (by (3) on p. 57).

[Make sure you understand how this equation (3) relates to the definitions of linear dependence and independence.]

2. If a set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

 $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_p\mathbf{v}_p=\mathbf{0}.$

3. A set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ of two or more vectors in linearly dependent iff at least one of the vectors in S is a linear combination of the other vectors.

Proof

Let S be defined as above.

 \implies : Done in class

 \Leftarrow : Let one vector be a _____ of the other vectors.

i.e. \exists ______ such that $\mathbf{v}_k = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_{k-1} \mathbf{v}_{k-1} + c_{k+1} \mathbf{v}_{k+1} + \ldots + c_p \mathbf{v}_p$

By subtraction $\mathbf{0} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_{k-1} \mathbf{v}_{k-1} + c_{k+1} \mathbf{v}_{k+1} + \ldots + c_p \mathbf{v}_p$

So the weight $c_k =$ _____.

Which means at least one weight is _____ such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p = \mathbf{0}$.

Therefore, by definition, S is ______ . \blacksquare

<u>COROLLARY</u> If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$ then there exists \mathbf{v}_j in S with j > 1 such that \mathbf{v}_j is a linear combination of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}$.

Proof

[Feel free to start, but Dr. Crawford will do this one.]