Ex: [Chemical Equations] Liquid benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ burns in the atmosphere $\left(\mathrm{O}_{2}\right)$. If a cold object is placed over the benzene, a reaction occurs that results in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and soot, i.e. Carbon (C), forming on the object. The unbalanced chemical equation is given by

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{C}+\mathrm{H}_{2} \mathrm{O}
$$

Since the atoms are neither created nor destroyed, the equation must be balanced by finding x_{1}, x_{2}, x_{3}, and x_{4} such that the total C, H, and O atoms on the LHS match the total on the RHS. i.e.

$$
x_{1} \mathrm{C}_{6} \mathrm{H}_{6}+x_{2} \mathrm{O}_{2} \longrightarrow x_{3} \mathrm{C}+x_{4} \mathrm{H}_{2} \mathrm{O}
$$

Ex: [Traffic Flow] Construction causes the following traffic network (with one-way traffic). Determine the general flow for the network.

Ex: [Economics] A primitive society currently barters 3 main goods: Food, Tools, and Clothing. The farmers keep 50% of the food themselves and give (i.e. trade) 30% to tool producers and 20% to clothing producers. The tool producers keep 30% of tools and give 35% to both food and clothing producers. The clothing manufacturers keep 40% of clothing and give 40% to the food producers and 20% to the tool producers.

The data can be summarized in the following or Graphically

Exchange Table:

Food	Tools	Clothing	Traded To
		Food	
		Tools	

Now the society wants to introduce a monetary system and they want to know how to price the goods so that each group's expenses balances its income (i.e. \qquad).

Let
$x_{1}=$ price of food
$x_{2}=$ price of tools
$x_{3}=$ price of clothing

In order to be in equilibrium: Total Income $=$ Total Expense

	Total Income	$=$	Total Expenses on	
		Food	Tools	Clothing
Food	x_{1}	$=$		
Tools	x_{2}	$=$		
Clothing	x_{3}	$=$		

