A matrix with only one column is called a \longrightarrow and denoted $\mathbf{u}=\left[\begin{array}{r}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$
Ex:

The entries can be written as \qquad called an n-tuple. Ex:
\qquad is the set of all n-tuples where each entry is in \qquad .

Ex: $n=2:\left(u_{1}, u_{2}\right)$ is an \qquad and defines a point in \qquad .

Ex: $n=3:\left(u_{1}, u_{2}, u_{3}\right)$ is an \qquad and defines a point in \qquad .

Graphical Representations of vectors in \mathbb{R}^{2} and \mathbb{R}^{3}.
$\mathbf{u}=\left[\begin{array}{l}a \\ b\end{array}\right]$ can be represented by a line segment $\mathrm{w} /$ an arrow from the origin to the point (a, b). But
$\underline{\text { Addition }}$ of two vectors: Add corresponding entries $\mathbf{u}+\mathbf{v}=\left[\begin{array}{r}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]+\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]=$
Examples and Graphical Representations

Scalar Multiplication $\left(c \in \mathbb{R}\right.$ is a scalar): Multiply each element by $c . c \mathbf{u}=c\left[\begin{array}{r}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]=$ Examples and Graphical Representations
$\underline{\text { Properties for vectors } \mathbf{u}, \mathbf{v} \text {, and } \mathbf{w} \text { in } \mathbb{R}^{n} \text { and scalars } c, d \in \mathbb{R} .}$

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
4. $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
5. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
6. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
7. $c(d \mathbf{u})=(c d) \mathbf{u}$
8. $1 \mathbf{u}=\mathbf{u}$
