Row Reduction and Echelon Forms								
Interchange, Scaling, and Replacement are calle	ed	for matrices.						
DEF Two matrices are i	f there is a sequence of elementary row	v operations that						

 $\underline{\text{D}\text{EF}}$ A ______ of a row is the left-most nonzero entry in that row.

	[1	2	3	14]
$\underline{\mathbf{Ex}}$: (from previous worksheet)	0	-4	5	33
	$\lfloor 2 \rfloor$	-1	1	13

We found a row equivalent matrix of the one above that was in a "good" form (step 4 of previous worksheet):

 $\begin{bmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 9 & 45 \end{bmatrix}$

But we went further to find a row equivalent matrix in an even "better" form (step 7):

$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$				
$\underline{\mathbf{Ex}}: \begin{bmatrix} -8 & -4 & -6 & -2 & 4 \\ 0 & 0 & 3 & 6 & 3 \\ 4 & 2 & 1 & 0 & -4 \\ 0 & 0 & 2 & 1 & 2 \end{bmatrix}$	\Rightarrow	$\begin{bmatrix} 4 & 2 & 3 & 1 & - \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} \implies$	$\begin{bmatrix} 1 & \frac{1}{2} & 0 & 0 & -\frac{5}{4} \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
$\underline{\text{Def}}$ A rectangular matrix is in		i	f it has the following 3	properties:
1.				
2.				
3.				
<u>DEF</u> Furthermore, it is in			if these 2 additiona	al properties hold:
4.				
5.				

Row Reduction and Echelon Forms	Page 2
<u>THEOREM</u> The Reduced (Row) Echelon Form is	for any given matrix.
DEF A in a matrix is the	of a leading 1 in reduced echelon form.
DEF A is a column that con	ntains a
<u>DEF</u> A is a nonzero number in the p	ivot position used to
	eduction Algorithm of Gaussian Elimination)
Forward Phase	<u>Ex:</u>
(to echelon form) Step 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Locate the nonzero column and	note: $x_1 - 2x_2 + 2x_3 + 2x_4 = 8$
• This is a	$5x_1 + 2x_4 = 20$
• The is at the top	of this

$\begin{bmatrix} 0 & -5 & 1 & 1 & 5 \\ 2 & 1 & 3 & 3 & 11 \\ 1 & -2 & 2 & 2 & 8 \\ 5 & 0 & 0 & 2 & 20 \end{bmatrix}$

Step 2

Choose a nonzero number in this column to be the _____.

- Choose wisely
- If necessary, interchange rows to move it to the pivot position
- (optional) Scale row to get a 1 in the pivot position.

Step 3

Use to get all zero entries below the pivot

Step 4

Ignore/Cover all rows above and including the pivot position.

form attained.

BACKWARD PHASE (to *reduced* echelon form)

Step 5

Locate the rightmost	Γ1	-2	2	2	8]
(a). Scale row to make	0	5	-1	-1	-5
(b). Use Row Operations to get above the pivot.	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0\\ 0\end{array}$	$-8 \\ 0$	$-6 \\ 0$	$\begin{bmatrix} 8\\ -5\\ -10\\ 0 \end{bmatrix}$

until echelon

(c). Locate the next rightmost pivot. Repeat steps 5(a)-5(b) until reduced echelon from is attained. [Extra space for previous problem, if needed.]

		L	inea	r Syst	em				\Rightarrow		Μ	latri	ix		\Rightarrow			RE	F		\Rightarrow
$2x_1 \\ x_1 \\ 5x_1$	+ -	$-5x_2 \\ x_2 \\ 2x_2$	+ + +	$\begin{array}{c} x_3\\ 3x_3\\ 2x_3\end{array}$	+ + +	$\begin{array}{c} x_4\\ 3x_4\\ 2x_4\\ 2x_4\\ 2x_4\end{array}$	=	$5\\11\\8\\20$	⇒	$\begin{bmatrix} 0\\2\\1\\5 \end{bmatrix}$	$-5 \\ 1 \\ -2 \\ 0$	$1 \\ 3 \\ 2 \\ 0$	$ \begin{array}{c} 1 \\ 3 \\ 2 \\ 2 \end{array} $	$\begin{bmatrix} 5\\11\\8\\20 \end{bmatrix}$	⇒	$\begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} -2 \\ 5 \\ 0 \\ 0 \end{array}$	$\begin{array}{c}2\\-1\\-8\\0\end{array}$	$\begin{array}{c} 2 \\ -1 \\ -6 \\ 0 \end{array}$	$\begin{bmatrix} 8\\ -5\\ -10\\ 0 \end{bmatrix}$	⇒

RREF	\Rightarrow	System	\Rightarrow	Solution
$\begin{bmatrix} 1 & 0 & 0 & 2/5 & 4 \\ 0 & 1 & 0 & -1/20 & -3/4 \\ 0 & 0 & 1 & 3/4 & 5/4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	\Rightarrow	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	\Rightarrow	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

<u>DEF</u> The ______ are the variables corresponding to the ______.

 $\underline{\mathbf{E}\mathbf{x}}$:

 $\underline{\text{D}\text{EF}}$ Any remaining variables not associated with the pivot columns are called ______.

 $\underline{\mathbf{E}\mathbf{x}}$:

 \implies Solution: