Interchange, Scaling, and Replacement are called \qquad for matrices.

Def Two matrices are \qquad if there is a sequence of elementary row operations that

DEf A \qquad of a row is the left-most nonzero entry in that row.

Ex: (from previous worksheet) $\left[\begin{array}{rrrr}1 & 2 & 3 & 14 \\ 0 & -4 & 5 & 33 \\ 2 & -1 & 1 & 13\end{array}\right]$

We found a row equivalent matrix of the one above that was in a "good" form (step 4 of previous worksheet):
$\left[\begin{array}{rrrr}1 & 2 & 3 & 14 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 9 & 45\end{array}\right]$

But we went further to find a row equivalent matrix in an even "better" form (step 7):
$\left[\begin{array}{rrrr}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 5\end{array}\right]$
Ex: $\left[\begin{array}{rrrrr}-8 & -4 & -6 & -2 & 4 \\ 0 & 0 & 3 & 6 & 3 \\ 4 & 2 & 1 & 0 & -4 \\ 0 & 0 & 2 & 1 & 2\end{array}\right] \quad \Longrightarrow \quad\left[\begin{array}{rrrrr}4 & 2 & 3 & 1 & -2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \quad \Longrightarrow \quad\left[\begin{array}{rrrrr}1 & \frac{1}{2} & 0 & 0 & -\frac{5}{4} \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
Def A rectangular matrix is in \qquad if it has the following 3 properties:
1.
2.
3.

Def Furthermore, it is in \qquad if these 2 additional properties hold:
4.
5.

Theorem The Reduced (Row) Echelon Form is \qquad for any given matrix.

Def A \qquad in a matrix is the \qquad of a leading 1 in reduced echelon form.

Def A \qquad is a column that contains a \qquad .

Def A \qquad is a nonzero number in the pivot position used to

Row Reduction Algorithm

(variant of Gaussian Elimination)

Step 2

Choose a nonzero number in this column to be the \qquad .

- Choose wisely
- If necessary, interchange rows to move it to the pivot position
- (optional) Scale row to get a 1 in the pivot position.

Step 3

Use to get all zero entries below the pivot

Step 4

Ignore/Cover all rows above and including the pivot position. until echelon form attained.

Backward Phase

(to reduced echelon form)

Step 5

Locate the rightmost \qquad .
(a). Scale row to make \qquad .
(b). Use Row Operations to get above the pivot.
(c). Locate the next rightmost pivot. Repeat steps 5(a)5 (b) until reduced echelon from is attained.
[Extra space for previous problem, if needed.]

$$
\begin{aligned}
& \text { Linear System } \quad \Rightarrow \quad \text { Matrix } \quad \Rightarrow \quad \text { REF } \quad \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { RREF } \Rightarrow \quad \text { System } \quad \Rightarrow \quad \text { Solution }
\end{aligned}
$$

Def The \qquad are the variables corresponding to the \qquad -

Ex:

DEF Any remaining variables not associated with the pivot columns are called \qquad .

Ex:
\Longrightarrow Solution:

