Graph 2 lines in \mathbb{R}^{2} and only 3 things can happen:

Given equations for 2 lines,
these graphical possibilities show the 3 possibilities for a solution to both equations
$y=x+1$
$y=x+1$
$x-y=-1$
$y=x-2$
$y=-x+3$
$-2 x+2 y=2$

no solution

no point makes both eqns true
inconsistent
unique solution
$(1,2)$ is only point that makes both eqns true
consistent
infinitely many solutions
all points on the line make both eqns true consistent and dependent

Def A \qquad in n variables $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is of the form
\qquad and $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are the \qquad .

EX: $y=x+1$
Ex: $2 \sqrt{3} x_{1}-x_{2}+(10-3 i) x_{4}=7$
Ex: $x_{1}=3\left(x_{2}+4 x_{3}\right)$

DEF A system of linear equations

Def A \qquad is a list of numbers $\left(s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right)$ that make all of the equations of a system \qquad when substituted for $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, respectively.

Def The \qquad is the set of all possible solutions to a system.

Def Two linear systems are \qquad if they have the same solution set.

EX: $(3,7,-1)$ is a solution to the system $\begin{aligned} 3 x_{1} \\ x_{1}\end{aligned}+x_{2}+4 x_{3}=1006$

Ex: $\{(k, k+1) \mid k \in \mathbb{R}\}$ is the solution set to the system $\begin{aligned} x-y & =-1 \\ -2 x+2 y & =2\end{aligned}$

DEF A system of linear equations is called

- \qquad if it has no solutions.
- \qquad if it has either one or infinitely many solutions.
Furthermore, if it has infinitely many solutions the system is called \qquad .

Important Note:

Def A matrix is a rectangular array of elements (often numbers)
An $m \times n$ matrix has m \qquad and n \qquad
A system of linear equations can be represented by two types of matrices:

Ex: Linear System

1. Coefficient Matrix

coefficients of each variable form the columns

2. Augmented Matrix

the coefficient matrix with an additional column containing the RHS constants

$$
\begin{aligned}
& 3 x_{1}+3 x_{3}= \\
& x_{1}+2 x_{2}-x_{3}=0 \\
& 2 x_{1}-x_{2}+5 x_{3}=1
\end{aligned}
$$

3 Operations on systems/matrices that yield an equivalent system/matrix \Longrightarrow
(a). Interchange: Interchange 2 equations/rows
(b). Scaling: Multiply the entire equation/row by a nonzero constant
(c). Replacement: Replace one equation/row by the sum of itself and a multiple of another equation/row

Ex:

$$
\begin{align*}
x_{1}+2 x_{2}+3 x_{3} & =14 \tag{1}\\
-4 x_{2}+5 x_{3} & =33 \\
2 x_{1}-x_{2}+x_{3} & =13
\end{align*}
$$

(2)
(3)

Ex:
$\left[\begin{array}{rrrr}1 & 2 & 3 & 14 \\ 0 & -4 & 5 & 33 \\ 2 & -1 & 1 & 13\end{array}\right]$

1. Interchange equations (2) and (3)

$$
\begin{align*}
x_{1}+2 x_{2}+3 x_{3} & =14 \tag{1}\\
2 x_{1}-x_{2}+x_{3} & =13 \tag{2}\\
-4 x_{2}+5 x_{3} & =33 \tag{3}
\end{align*}
$$

1. Interchange rows 2 and 3
2. Replace row 2 with: -2 row $1+$ row 2

$$
\begin{align*}
x_{1}+2 x_{2}+3 x_{3} & =14 \tag{1}\\
-5 x_{2}-5 x_{3} & =-15 \\
-4 x_{2}+5 x_{3} & =33
\end{align*}
$$

3. Scale equation (2) by multiplying by $-\frac{1}{5}$
4. Scale row 2 by multiplying by $-\frac{1}{5}$

$$
\begin{align*}
& x_{1}+2 x_{2}+3 x_{3}=14 \tag{1}\\
& x_{2}+x_{3}=3 \tag{2}\\
& -4 x_{2}+5 x_{3}=33
\end{align*}
$$ (3)

4. Replace equation (3) with: 4•(2)+(3)
5. Replace row 3 with: 4 row $2+$ row 3

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =14 \\
x_{2}+x_{3} & =3 \\
9 x_{3} & =45
\end{aligned}
$$

5. Scale equation (3) by multiplying by $\frac{1}{9}$

$$
\begin{align*}
x_{1}+2 x_{2}+3 x_{3} & =14 \tag{1}\\
x_{2}+x_{3} & =3 \\
x_{3} & =5
\end{align*}
$$

5. Scale row 3 by multiplying by $\frac{1}{9}$
6. Replace row 2 with: -1 row $3+$ row 2 Replace row 1 with: $-3 \cdot$ row $3+$ row 1

$$
\begin{array}{rlrl}
x_{1}+2 x_{2} & & -1 & (1) \\
x_{2} & & -2 & (2) \\
& x_{3} & =5
\end{array}
$$

6. Replace equation (2) with: $-1 \cdot(3)+$ (2)

Replace equation (1) with: $-3 \cdot(3)+$ (1)
7. Replace equation (1) with: $-2 \cdot(2)+(1)$
7. Replace row 1 with: $-2 \cdot$ row $2+$ row 1

