Name:
Math 362 Linear Algebra - Crawford
Books, notes (in any form), and calculators are not are allowed. Show all other work for credit. Good luck! [Note: Each quiz score will be scaled to 15 points after grading.]

1. (7 pts) Given the system $\begin{aligned} 2 s x_{1}+3 x_{2} & =4 \\ 6 x_{1}+s x_{2} & =2\end{aligned}$, which contains the parameter s,
(a). Determine the value(s) of s for which the system has a unique solution.
(b). Use Cramer's Rule to find the solution.
2. (4 pts$)$ Determine whether the following statements are true or false.
(a). If A is invertible, then the columns of A^{-1} are linearly independent.
(b). If $n \times n$ matrices satisfy the property that $E F=I$, then E and F commute.
(c). If A is an $n \times n$ matrix such that $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}, then the solution is unique for each \mathbf{b}.
(d). Suppose A is a $n \times n$ matrix with $\operatorname{det} A=1$. If the entries in A are integers, then the entries in A^{-1} are integers.
3. (4 pts) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. If $T(\mathbf{u})=T(\mathbf{v})$ for a pair of distinct vectors \mathbf{u} and \mathbf{v}, prove that T is not onto \mathbb{R}^{n}.
