Name: _

Math 362 Linear Algebra – Crawford

Books, notes (in any form), and calculators are <u>not</u> are allowed. Show all other work for credit. *Good luck!* [Note: Each quiz score will be scaled to 15 points after grading.]

1. (7 pts) Given the system $\begin{array}{rcrr} 2sx_1 &+& 3x_2 &=& 4\\ 6x_1 &+& sx_2 &=& 2 \end{array}$, which contains the parameter s,

(a). Determine the value(s) of s for which the system has a unique solution.

(b). Use Cramer's Rule to find the solution.

- 2. (4 pts) Determine whether the following statements are true or false.
- (a). If A is invertible, then the columns of A^{-1} are linearly independent.
- (b). If $n \times n$ matrices satisfy the property that EF = I, then E and F commute.
- (c). If A is an $n \times n$ matrix such that $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n , then the solution is unique for each \mathbf{b} .
- (d). Suppose A is a $n \times n$ matrix with det A = 1. If the entries in A are integers, then the entries in A^{-1} are integers.

3. (4 pts) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. If $T(\mathbf{u}) = T(\mathbf{v})$ for a pair of distinct vectors \mathbf{u} and \mathbf{v} , prove that T is not onto \mathbb{R}^n .