Example: Sample Means

1. Suppose you have 4 students whose ages are 18, 19, 20, and 25. The population are the values of their ages {18, 19, 20, 25}.

(a). Find the mean of their ages (i.e. the mean, μ , of the population.)

(b). The first column in the table below left consists of all possible samples of size 2 with replacement. Find the mean, \bar{x} , of each sample and enter it in the second column.

[Table for p	art (b)]					
Sample	Sample Mean \bar{x}	[Table for part (c)]	[Table for part (c)]			
		Sample Mean \bar{x}	Probability			
		18.0				
		18.5				
		19.0				
19, 18	18.5					
19, 19	19.0	19.5	2/16			
19, 20	19.5					
19, 25	22.0	20.0	1/16			
20, 18	19.0		2 4 2			
20, 19	19.5	21.5	2/16			
20, 20	20.0	22.0	0/10			
20, 25	22.5	22.0	2/16			
25, 18	21.5	00 F	0/10			
25, 19	22.0	22.5	2/16			
25, 20 25, 25	22.5	9F 0	1/16			
20, 20	20.0	25.0	1/10			

(c). Using the table of the Sample Means (above left), complete the probability distribution table (above right).

(d). Note that the table from part (c) describes a probability distribution for the sample mean \bar{x} . Find the mean of this probability distribution (i.e. Find $\sum \bar{x} \cdot P(\bar{x})$ and call in $\mu_{\bar{x}}$)

(e). How do μ from part (a) and $\mu_{\bar{x}}$ from part (d) compare?

Sampling Distributions

2. Using the same population {18, 19, 20, 25}, the data below gives all possible samples of size 3 with replacement.

Sample Mean \bar{x}	18, 18, 18	18, 18, 19	18, 18, 20	18, 18, 25	18, 19, 18	18, 19, 19	18, 19, 20	18, 19, 25
	18.0	18.3	18.7	20.3	18.3	18.7	19.0	20.7
Sample Mean \bar{x}	18, 20, 18	18, 20, 19	18, 20, 20	18, 20, 25	18, 25, 18	18, 25, 19	18, 25, 20	18, 25, 25
	18.7	19.0	19.3	21.0	20.3	20.7	21.0	22.7
Sample Mean \bar{x}	19, 18, 18	19, 18, 19	19, 18, 20	19, 18, 25	19, 19, 18	19, 19, 19	19, 19, 20	19, 19, 25
	18.3	18.7	19.0	20.7	18.7	19.0	19.3	21.0
Sample Mean \bar{x}	19, 20, 18	19, 20, 19	19, 20, 20	19, 20, 25	19, 25, 18	19, 25, 19	19, 25, 20	19, 25, 25
	19.0	19.3	19.7	21.3	20.7	21.0	21.3	23.0
Sample Mean \bar{x}	20, 18, 18	20, 18, 19	20, 18, 20	20, 18, 25	20, 19, 18	20, 19, 19	20, 19, 20	20, 19, 25
	18.7	19.0	19.3	21.0	19.0	19.3	19.7	21.3
Sample Mean \bar{x}	20, 20, 18	20, 20, 19	20, 20, 20	20, 20, 25	20, 25, 18	20, 25, 19	20, 25, 20	20, 25, 25
	19.3	19.7	20.0	21.7	21.0	21.3	21.7	23.3
Sample Mean \bar{x}	25, 18, 18	25, 18, 19	25, 18, 20	25, 18, 25	25, 19, 18	25, 19, 19	25, 19, 20	25, 19, 25
	20.3	20.7	21.0	22.7	20.7	21.0	21.3	23.0
Sample Mean \bar{x}	25, 20, 18	25, 20, 19	25, 20, 20	25, 20, 25	25, 25, 18	25, 25, 19	25, 25, 20	25, 25, 25
	21.0	21.3	21.7	23.3	22.7	23.0	23.3	25.0

\bar{x}	Probability
18.0	
18.3	
18.7	
19.0	7/64
19.3	6/64
19.7	3'/64
20.0	1/64
20.3	3/64
20.7	6/64
21.0	9/64
21.3	6/64
21.7	3/64
22.7	3/64
23.0	3/64
23.3	3/64
25.0	1/64

(a). Complete the following probability distribution table.

(b). Find the mean of this probability distribution (i.e. Find $\sum \bar{x} \cdot P(\bar{x})$ and call in $\mu_{\bar{x}}$)

(c). How do μ from #1 part (a) and $\mu_{\bar{x}}$ from #2 part (b) compare?

Example: Sample *Ranges*

3. Suppose you have 4 students whose ages are 18, 19, 20, and 25. The population are the values of their ages {18, 19, 20, 25}.

(a). Find the range of their ages (i.e. the range of the population.)

(b). The first column in the table below left consists of all possible <u>samples</u> of size 2 *with replacement*. Find the range of each sample and enter it in the second column.

[Table for p	art (b)]		
Sample	Sample Range		
18, 18		[Table for part (c)]	
18, 19			
18, 20		Sample Range	Probability
18, 25	1		
19, 18 10, 10	1		
19, 19 10, 20	0	1	
19, 20 10, 25	1 6		
20.18	$\frac{0}{2}$	2	
20, 10 20, 19	1	_	2/12
20, 20	0	5	2/16
20, 25	5	G	9/16
25, 18	7	0	2/10
25, 19	6	7	2/16
25, 20	5	1	2/10
25, 25	0		

(c). Using the table of the Sample Ranges (above left), complete the probability distribution table (above right).

(d). Note that the table from part (c) describes a probability distribution for the Sample Ranges. Find the mean of this probability distribution (i.e. Find $\sum x \cdot P(x)$ and call it the mean of the Sample Ranges.

(e). How does the population range from part (a) and the mean of the Sample Ranges from part (d) compare?