Example: Sample Means

1. Suppose you have 4 students whose ages are $18,19,20$, and 25 . The population are the values of their ages $\{18,19,20,25\}$.
(a). Find the mean of their ages (i.e. the mean, μ, of the population.)
(b). The first column in the table below left consists of all possible samples of size 2 with replacement. Find the mean, \bar{x}, of each sample and enter it in the second column.
[Table for part (b)]

Sample	Sample Mean \bar{x}	[Table for part (c)]	
		Sample Mean \bar{x}	Probability
		18.0	
		18.5	
		19.0	
19, 18	18.5		
19, 19	19.0	19.5	2/16
19, 20	19.5		
19, 25	22.0	20.0	1/16
20, 18	19.0		
20, 19	19.5	21.5	2/16
20, 20	20.0		
20, 25	22.5	22.0	2/16
25, 18	21.5		
25, 19	22.0	22.5	2/16
25, 20	22.5		
25, 25	25.0	25.0	1/16

(c). Using the table of the Sample Means (above left), complete the probability distribution table (above right).
(d). Note that the table from part (c) describes a probability distribution for the sample mean \bar{x}. Find the mean of this probability distribution (i.e. Find $\sum \bar{x} \cdot P(\bar{x})$ and call in $\left.\mu_{\bar{x}}\right)$
(e). How do μ from part (a) and $\mu_{\bar{x}}$ from part (d) compare?
2. Using the same population $\{18,19,20,25\}$, the data below gives all possible samples of size 3 with replacement.

| Sample | $18,18,18$ | $18,18,19$ | $18,18,20$ | $18,18,25$ | $18,19,18$ | $18,19,19$ | $18,19,20$ | $18,19,25$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean \bar{x} | $\mathbf{1 8 . 0}$ | $\mathbf{1 8 . 3}$ | $\mathbf{1 8 . 7}$ | $\mathbf{2 0 . 3}$ | $\mathbf{1 8 . 3}$ | $\mathbf{1 8 . 7}$ | $\mathbf{1 9 . 0}$ | $\mathbf{2 0 . 7}$ |
| Sample | $18,20,18$ | $18,20,19$ | $18,20,20$ | $18,20,25$ | $18,25,18$ | $18,25,19$ | $18,25,20$ | $18,25,25$ |
| Mean \bar{x} | $\mathbf{1 8 . 7}$ | $\mathbf{1 9 . 0}$ | $\mathbf{1 9 . 3}$ | $\mathbf{2 1 . 0}$ | $\mathbf{2 0 . 3}$ | $\mathbf{2 0 . 7}$ | $\mathbf{2 1 . 0}$ | $\mathbf{2 2 . 7}$ |
| Sample | $19,18,18$ | $19,18,19$ | $19,18,20$ | $19,18,25$ | $19,19,18$ | $19,19,19$ | $19,19,20$ | $19,19,25$ |
| Mean \bar{x} | $\mathbf{1 8 . 3}$ | $\mathbf{1 8 . 7}$ | $\mathbf{1 9 . 0}$ | $\mathbf{2 0 . 7}$ | $\mathbf{1 8 . 7}$ | $\mathbf{1 9 . 0}$ | $\mathbf{1 9 . 3}$ | $\mathbf{2 1 . 0}$ |
| Sample | $19,20,18$ | $19,20,19$ | $19,20,20$ | $19,20,25$ | $19,25,18$ | $19,25,19$ | $19,25,20$ | $19,25,25$ |
| Mean \bar{x} | $\mathbf{1 9 . 0}$ | $\mathbf{1 9 . 3}$ | $\mathbf{1 9 . 7}$ | $\mathbf{2 1 . 3}$ | $\mathbf{2 0 . 7}$ | $\mathbf{2 1 . 0}$ | $\mathbf{2 1 . 3}$ | $\mathbf{2 3 . 0}$ |
| Sample | $20,18,18$ | $20,18,19$ | $20,18,20$ | $20,18,25$ | $20,19,18$ | $20,19,19$ | $20,19,20$ | $20,19,25$ |
| Mean \bar{x} | $\mathbf{1 8 . 7}$ | $\mathbf{1 9 . 0}$ | $\mathbf{1 9 . 3}$ | $\mathbf{2 1 . 0}$ | $\mathbf{1 9 . 0}$ | $\mathbf{1 9 . 3}$ | $\mathbf{1 9 . 7}$ | $\mathbf{2 1 . 3}$ |
| Sample | $20,20,18$ | $20,20,19$ | $20,20,20$ | $20,20,25$ | $20,25,18$ | $20,25,19$ | $20,25,20$ | $20,25,25$ |
| Mean \bar{x} | $\mathbf{1 9 . 3}$ | $\mathbf{1 9 . 7}$ | $\mathbf{2 0 . 0}$ | $\mathbf{2 1 . 7}$ | $\mathbf{2 1 . 0}$ | $\mathbf{2 1 . 3}$ | $\mathbf{2 1 . 7}$ | $\mathbf{2 3 . 3}$ |
| Sample | $25,18,18$ | $25,18,19$ | $25,18,20$ | $25,18,25$ | $25,19,18$ | $25,19,19$ | $25,19,20$ | $25,19,25$ |
| Mean \bar{x} | $\mathbf{2 0 . 3}$ | $\mathbf{2 0 . 7}$ | $\mathbf{2 1 . 0}$ | $\mathbf{2 2 . 7}$ | $\mathbf{2 0 . 7}$ | $\mathbf{2 1 . 0}$ | $\mathbf{2 1 . 3}$ | $\mathbf{2 3 . 0}$ |
| Sample | $25,20,18$ | $25,20,19$ | $25,20,20$ | $25,20,25$ | $25,25,18$ | $25,25,19$ | $25,25,20$ | $25,25,25$ |
| Mean \bar{x} | $\mathbf{2 1 . 0}$ | $\mathbf{2 1 . 3}$ | $\mathbf{2 1 . 7}$ | $\mathbf{2 3 . 3}$ | $\mathbf{2 2 . 7}$ | $\mathbf{2 3 . 0}$ | $\mathbf{2 3 . 3}$ | $\mathbf{2 5 . 0}$ |

(a). Complete the following probability distribution table.

\bar{x}	Probability
18.0	
18.3	
18.7	
19.0	$7 / 64$
19.3	$6 / 64$
19.7	$3 / 64$
20.0	$1 / 64$
20.3	$3 / 64$
20.7	$6 / 64$
21.0	$9 / 64$
21.3	$6 / 64$
21.7	$3 / 64$
22.7	$3 / 64$
23.0	$3 / 64$
23.3	$3 / 64$
25.0	$1 / 64$

(b). Find the mean of this probability distribution (i.e. Find $\sum \bar{x} \cdot P(\bar{x})$ and call in $\mu_{\bar{x}}$)
(c). How do μ from $\# 1$ part (a) and $\mu_{\bar{x}}$ from $\# 2$ part (b) compare?

Example: Sample Ranges
3. Suppose you have 4 students whose ages are $18,19,20$, and 25 . The population are the values of their ages $\{18,19,20,25\}$.
(a). Find the range of their ages (i.e. the range of the population.)
(b). The first column in the table below left consists of all possible samples of size 2 with replacement. Find the range of each sample and enter it in the second column.
[Table for part (b)]

Sample	Sample Range	[Table for part (c)]	
18, 18			
18, 19			
18, 20		Sample Range	Probability
18, 25	1	0	
19, 18	1		
19, 19	0	1	
19, 20	1	1	
19, 25	6	2	
20, 18	2	2	
20, 19	1	5	2/16
20, 20	0	5	/ 16
20, 25	5	6	2/16
25, 18	7	6	2/16
25, 19	6	7	2/16
25, 20	5	7	2/16
25, 25	0		

(c). Using the table of the Sample Ranges (above left), complete the probability distribution table (above right).
(d). Note that the table from part (c) describes a probability distribution for the Sample Ranges. Find the mean of this probability distribution (i.e. Find $\sum x \cdot P(x)$ and call it the mean of the Sample Ranges.
(e). How does the population range from part (a) and the mean of the Sample Ranges from part (d) compare?

