1. Using the bike commuting time data (6 days), calculate the standard deviation and variance.
$\begin{array}{lllllll}\text { Commuting Time (min): } 44.5 & 45.0 & 48.0 & 47.0 & 49.5 & 46.0\end{array}$

Steps for calculating the standard deviation s :

1. Compute the mean \bar{x}

$$
\bar{x}=\frac{44.5+45.0+48.0+47.0+49.5+46.0}{6}=
$$

2. For each data value, compute $x-\bar{x}$.

3. Square all values computed in Step 2.	44.5
45.0	
48.0	
47.0	
4. Sum all of the squared values in Step 3.	49.5
	46.0

5. Divide the sum from Step 4 by $n-1$
[Note: This is the variance.]
6. Take the square root of the value in Step 5 to find the standard deviation.

Summary:

Is there an easier way?
2. Compute the standard deviation for the customer waiting times using the data from the previous worksheet for the
(a). Multi-line data: $5,10,3,15,2$
(b). Single-line data: $7,8,7,8,5$
3. Given the data set $3,5,4,2,5,3,4,2$, find the mean, range, standard deviation, and variance.
4. Given the data set $3,5,4,2,5,3,4,2,67$, find the mean, range, standard deviation, and variance.

Which of the measures (range, standard deviation, and variance), if any are resistant to outliers?
5. While training for a triathlon, a recreational athlete determines that she averages 10 minute miles with a standard deviation of 0.25 minute. She also averages 23 laps per $1 / 2$ hour with a standard deviation of 1 lap. In which of these sports is she more consistent?

How can we make a comparison between these two measurements that are so different (minutes vs. laps)?

