<u>Ex</u> Listed below are the number of times a cricket chirps in 1 minute and the corresponding temperature in $^{\circ}$ F (based on data from *The Song of Insects*, by George W. Pierce, Harvard University Press). [Triola, 13th Edition 10.1 #22]

Chirps in 1 minute	882	1188	1104	864	1200	1032	960	900
Temperature (°F)	69.7	93.3	84.3	76.3	88.6	82.6	71.6	79.6

(a). Construct a scatter plot.

- (b). Find the correlation coefficient r.
- (c). Find the *P*-value.
- (d). Use a significance level of $\alpha = 0.05$ to determine whether evidence supports the claim of a linear correlation.

(e). Find the regression equation.

- (f). Find the best predicted temperatures when a cricket chirps 1000 times in 1 minute. Does the answer seem realistic? Why or why not?
- (g). Find the best predicted temperatures when a cricket chirps 3000 times in 1 minute. Does the answer seem realistic? Why or why not?

 $\underline{\text{Ex}}$ Listed below are duration times (sec) and time intervals (min) to the next eruption for randomly selected eruptions of Old Faithful Geyser in Yellowstone National Park. [Triola, 13th Edition 10.1 #14]

Duration (sec)	242	255	227	251	262	207	140
Interval After (min)	91	81	91	92	102	94	91

(a). Construct a scatter plot.

(b). Find the correlation coefficient r.

(c). Find the *P*-value.

(d). Use a significance level of $\alpha = 0.05$ to determine whether evidence supports the claim of a linear correlation.

(e). Find the regression equation.

(f). Find the best predicted "interval after" time for an eruption with a duration of 253 seconds.

How does it compare an actual eruption eruption with a duration of 253 seconds and an interval after time of 83 minutes?

Homework: For each of the following problems, (a) Find the regression line y = a + bx and (b) Find the best predicted value asked for in the problem. Note: Each problem is related to the same problem in Section 10.1. Be sure to use the results of whether a linear correlation exists or not from Section 10.1 to determine the best predicted value.

Section 10.2, p. 499: #15, 17, 19, 21, 23, 25