Name:
Quiz 4-A
Math 345 Elementary Statistics - Crawford
Use may use a calculator and the given information sheet(s). Books and other notes (in any form) are not allowed. Round final answers to 3 decimal places. Show your set-up and work. Good Luck!

```
normalcdf( L, R, }\mu,\sigma
invNorm( }\mp@subsup{A}{L}{},\mu,\sigma
\(\operatorname{tcdf}(L, R, d f)\)
\(\operatorname{invT}\left(A_{L}, d f\right)\)
```

Chapter 7:
$\hat{p}-E<p<\hat{p}+E$ where $E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$

$$
\begin{aligned}
\frac{(n-1) s^{2}}{\chi_{R}^{2}} & <\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{L}^{2}} \\
\sqrt{\frac{(n-1) s^{2}}{\chi_{R}^{2}}} & <\sigma<\sqrt{\frac{(n-1) s^{2}}{\chi_{L}^{2}}}
\end{aligned}
$$

$\bar{x}-E<\mu<\bar{x}+E$ where $E=t_{\alpha / 2} \frac{s}{\sqrt{n}}$

Chapter 8: Test Statistics
proportion: $z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}} \quad \hat{p}=\frac{x}{n} \quad$ mean: $t=\frac{\bar{x}-\mu}{s / \sqrt{n}} \quad$ standard deviation or variance: $\quad \chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}$

1. (7 pts) The mean weight of glass discarded in one week by 8 randomly selected households is 3.84 lbs with a standard deviation of 2.46 lbs . Construct a 95% confidence interval for the standard deviation by
(a). Determining the critical values χ_{L}^{2} and χ_{R}^{2}.
[Clearly indicate which one is χ_{L}^{2} and χ_{R}^{2}.]
(b). Then constructing the confidence interval using the appropriate formulas.
2. (8 pts) A survey showed that among 785 randomly selected subjects who completed four years of college, 18.3% smoke (based on data from the American Medical Association). Use a 0.01 significance level to test the claim that the proportion of those who smoke among people with four years of college is less than the 27% for the general population. [Use the critical value method.]
3. Original claim in symbolic form:
4. Competing idea (complement) in symbolic form:
5. H_{0} :
H_{1} :
6. $\alpha=$
7. Formula for the test statistic:
8. Observed value of the test statistic with calculations:

Graph showing the critical value(s), critical region, and the observed value of the test statistic:

Critical value(s):
7. Circle one: \quad Reject $H_{0} \quad$ Fail to reject H_{0}
8. Wording of the final conclusion in simple, nontechnical terms, addressing the original claim.

