The heat equation (and later the wave equation) led to an eigenvalue problem of the form:
$\phi^{\prime \prime}+\lambda^{2} \phi=0, \quad l<x<r$
$\alpha_{1} \phi(l)-\alpha_{2} \phi^{\prime}(l)=0$
$\beta_{1} \phi(r)+\beta_{2} \phi^{\prime}(r)=0$
(a). Section 2.3 Fixed End Temperatures: $\alpha_{1}=\beta_{1}=1$ and $\alpha_{2}=\beta_{2}=0$

$$
\left.\begin{array}{l}
\phi^{\prime \prime}+\lambda^{2} \phi=0, \quad 0<x<L \\
\phi(0)=0, \quad \phi(L)=0
\end{array}\right\} \Longrightarrow \text { Eigenvalues and Eigenfunctions: }
$$

(b). Section 2.4 Insulated Bar: $\alpha_{1}=\beta_{1}=0$ and $\alpha_{2}=\beta_{2}=1$

$$
\left.\begin{array}{l}
\phi^{\prime \prime}+\lambda^{2} \phi=0, \quad 0<x<L \\
\phi^{\prime}(0)=0, \quad \phi^{\prime}(L)=0
\end{array}\right\} \Longrightarrow \text { Eigenvalues and Eigenfunctions: }
$$

(c). Section 2.5 Different Boundary Conditions: $\alpha_{1}=\beta_{2}=1$ and $\alpha_{2}=\beta_{1}=0$

$$
\left.\begin{array}{l}
\phi^{\prime \prime}+\lambda^{2} \phi=0, \quad 0<x<L \\
\phi(0)=0, \quad \phi^{\prime}(L)=0
\end{array}\right\} \Longrightarrow \text { Eigenvalues and Eigenfunctions: }
$$

(d). Section 2.6 Convection: $\alpha_{1}=1, \alpha_{2}=0, \beta_{1}=h$ and $\beta_{2}=-\kappa$

$$
\left.\begin{array}{l}
\phi^{\prime \prime}+\lambda^{2} \phi=0, \quad 0<x<L \\
\phi(0)=0, \quad h \phi(L)+\kappa \phi^{\prime}(L)=0
\end{array}\right\} \Longrightarrow \text { Eigenvalues and Eigenfunctions: }
$$

Cases (c) and (d) led to non-standard Fourier Series, but by direct calculation we showed that the orthogonality of eigenfunctions still held.
i.e. $\int_{0}^{L} \phi_{n}(x) \phi_{m}(x) d x=$

Show that the orthogonality condition holds for any eigenfunctions of the general eigenvalue problem given at the top of p. 1 .

Let ϕ_{n} and ϕ_{m} be eigenfunctions that correspond to two different eigenvalues λ_{n}^{2} and λ_{m}^{2}.

Then ϕ_{n} and ϕ_{m} satisfy the ODE and BC's.
i.e.
(1) and
$+B C$'s

Multiply (1) by ϕ_{m} and (2) by ϕ_{n} and subtract:

$$
\phi_{n}^{\prime \prime} \phi_{m}+\lambda_{n}^{2} \phi_{n} \phi_{m}-\left(\phi_{m}^{\prime \prime} \phi_{n}+\lambda_{m}^{2} \phi_{m} \phi_{n}\right)=0
$$

Integrate both sides over the interval $l<x<r$:

$$
\left(\lambda_{m}^{2}-\lambda_{n}^{2}\right) \int_{l}^{r} \phi_{m} \phi_{n} d x=\int_{l}^{r} \phi_{n}^{\prime \prime} \phi_{m}-\phi_{m}^{\prime \prime} \phi_{n} d x
$$

$$
\begin{aligned}
& \stackrel{\text { IBP }}{=} \\
& =\phi_{n}^{\prime} \phi_{m}-\left.\phi_{m}^{\prime} \phi_{n}\right|_{l} ^{r} \\
& =
\end{aligned}
$$

From BC1 at $x=l$:
$\alpha_{1} \phi_{m}(l)-\alpha_{2} \phi_{m}^{\prime}(l)=0$
$\alpha_{1} \phi_{n}(l)-\alpha_{2} \phi_{n}^{\prime}(l)=0$

From BC2 at $x=r$:

$$
\begin{aligned}
\beta_{1} \phi_{m}(r)+\beta_{2} \phi_{m}^{\prime}(r) & =0 \\
\beta_{1} \phi_{n}(r)+\beta_{2} \phi_{n}^{\prime}(r) & =0
\end{aligned}
$$

Repeat the process on p.2-3 to derive the orthogonality condition for the more generalized eigenvalue problem: $\left[s(x) \phi^{\prime}(x)\right]^{\prime}-q(x) \phi(x)+\lambda^{2} p(x) \phi(x)=0, \quad l<x<r$ $\alpha_{1} \phi(l)-\alpha_{2} \phi^{\prime}(l)=0$
$\beta_{1} \phi(r)+\beta_{2} \phi^{\prime}(r)=0$

