1. So the solution to the transient problem is
$w(x, t)=\widetilde{a_{0}}+\sum_{n=1}^{\infty} a_{n} \cos \left(\lambda_{n} x\right) e^{-\lambda_{n}^{2} k t} \quad \quad$ where $\lambda_{n}=\frac{n \pi}{L}$
(a). Use the initial condition $w(x, 0)=g(x)=f(x)-v(x)=f(x)-C_{2}$ to find $\widetilde{a_{0}}$.

Cosine Series \Longrightarrow

$$
\begin{aligned}
\widetilde{a_{0}} & =\frac{1}{L} \int_{0}^{L} g(x) d x=\frac{1}{L} \int_{0}^{L} d x \\
& =\frac{1}{L} \int_{0}^{L} f(x) d x-\frac{1}{L} \int_{0}^{L} C_{2} d x \\
& =\frac{1}{L} \int_{0}^{L} f(x) d x-\left.\quad\right|_{0} ^{L}=\frac{1}{L} \int_{0}^{L} f(x) d x-\frac{1}{L} C_{2}(L-0) \\
& =\frac{1}{L} \int_{0}^{L} f(x) d x-
\end{aligned}
$$

$$
=a_{0}-C_{2} \quad \text { where } a_{0} \text { is the } 0 \text { th coefficient for }
$$

\qquad , not \qquad .
(b). Use the result of part(a) to write the solution for the transient $w(x, t)$.
(c). Write the full solution for $u(x, t)$ (simplify).
$u(x, t)=v(x)+w(x, t)=$
where

$$
a_{0}=
$$

and
$a_{n}=$
(d). Compare the form of the solution for the transient $w(x, t)$ and the full solution $u(x, t)$.

Helpful time-saving tip

If the PDE and BC's are already homogeneous,

