1. So the solution to the transient problem is

$$w(x,t) = \widetilde{a_0} + \sum_{n=1}^{\infty} a_n \cos(\lambda_n x) e^{-\lambda_n^2 k t}$$
 where $\lambda_n = \frac{n\pi}{L}$

(a). Use the initial condition $w(x,0) = g(x) = f(x) - v(x) = f(x) - C_2$ to find $\tilde{a_0}$.

Cosine Series
$$\implies$$

 $\widetilde{a_0} = \frac{1}{L} \int_0^L g(x) \, dx = \frac{1}{L} \int_0^L dx$
 $= \frac{1}{L} \int_0^L f(x) \, dx - \frac{1}{L} \int_0^L C_2 \, dx$
 $= \frac{1}{L} \int_0^L f(x) \, dx - \qquad \Big|_0^L = \frac{1}{L} \int_0^L f(x) \, dx - \frac{1}{L} C_2(L-0)$
 $= \frac{1}{L} \int_0^L f(x) \, dx - \qquad = a_0 - C_2$ where a_0 is the 0th coefficient for _____, not ____.

(b). Use the result of part(a) to write the solution for the transient w(x,t).

(c). Write the full solution for u(x,t) (simplify).

$$u(x,t) = v(x) + w(x,t) =$$

where $a_0 =$ and $a_n =$

(d). Compare the form of the solution for the transient w(x,t) and the full solution u(x,t).

Helpful time-saving tip

If the PDE and BC's are already homogeneous,