$$
\begin{array}{rcl}
\text { PDE: } & \frac{1}{k} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} & 0<x<L, t>0 \\
\text { BC: } & \frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(L, t)=0 & t>0 \\
\text { IC: } & u(x, 0)=f(x) & 0<x<L
\end{array}
$$

1. Give a physical interpretation of the boundary conditions.

Solve the following Heat Equation problem:
2. Steady-State Problem: As $t \rightarrow \infty, \frac{\partial u}{\partial t} \rightarrow$ \qquad and $u(x, t) \rightarrow$ \qquad
ODE: $\quad v^{\prime \prime}=0$
BC: $\quad v^{\prime}(0)=0$ and \qquad
\qquad

$$
\Rightarrow \quad v^{\prime}(0)=
$$

$v^{\prime}(x)=$ \qquad

$$
\Rightarrow \quad v^{\prime}(L)=
$$

\qquad

Steady-State Solution: $v(x)=$ \qquad

Is the Steady State Solution Unique? \qquad

Use physical reasoning to find the constant steady-state temperature. [See board.]
3. Transient Problem: $u(x, t)=w(x, t)+v(x)$

Look at the original PDE and BC's for u. Without substituting, explain why the Transient PDE and BC's will be the same.

Verify that they are the same by substitution.
$\operatorname{PDE}: \frac{1}{k} \frac{\partial}{\partial t}[w+v]=\frac{\partial^{2}}{\partial x^{2}}[w+v] \Rightarrow \frac{1}{k}\left(\frac{\partial w}{\partial t}+\ldots \quad+v^{\prime \prime} \operatorname{But} v^{\prime \prime}=\ldots \quad \Rightarrow \frac{1}{k} \frac{\partial w}{\partial t}=\frac{\partial^{2} w}{\partial x^{2}}\right.$
$\mathrm{BC} 1: \frac{\partial u}{\partial x}(0, t)=\frac{\partial w}{\partial x}(0, t)+v^{\prime \prime}(0)=0 \Rightarrow \frac{\partial w}{\partial x}(0, t)+_=0 \Rightarrow$

$$
\frac{\partial w}{\partial x}(0, t)=
$$

$\mathrm{BC} 2: \frac{\partial u}{\partial x}(L, t)=\left.\frac{\partial}{\partial x}[w+v]\right|_{(L, t)}=\frac{\partial w}{\partial x}(L, t)+\ldots=0 \Rightarrow$

$$
\frac{\partial w}{\partial x}(L, t)=0
$$

IC: $u(x, 0)=w(x, 0)+v(x)=f(x) \Rightarrow$
$w(x, 0)=f(x)-v(x)=f(x)-$ \qquad $=g(x)$

Solve by Separation of Variables
$w(x, t)=$ \qquad
PDE: $\Rightarrow \frac{1}{k} \phi T=\phi^{\prime \prime} T \quad \Rightarrow$
$\Rightarrow \quad \frac{1}{k} \frac{T^{\prime}}{T}=\frac{\phi^{\prime \prime}}{\phi}=\mathrm{constant}$
BCs: $\phi^{\prime}(0) T(t)=0 \Rightarrow$
and \qquad

Case 1: constant $=p^{2}>0$
$\frac{\phi^{\prime \prime}}{\phi}=p^{2} \Rightarrow \quad \phi^{\prime \prime}-p^{2} \phi=0 \quad \phi^{\prime}(0)=0, \phi^{\prime}(L)=0$
$\phi(x)=$
$\phi^{\prime}(x)=C_{1} p \sinh p x+C_{2} p \cosh p x \Rightarrow \phi^{\prime}(0)=$ \qquad $=0 \Rightarrow C_{2} p=$ \qquad $\Rightarrow C_{2}=0$
$\phi^{\prime}(x)=C_{1} p \sinh p x \Rightarrow \phi^{\prime}(L)=$ \qquad OR
$\sinh p L=0 \Rightarrow$ Not possible for $p \neq 0$ $C_{1}=0 \Rightarrow$ Trivial Solution
\Rightarrow Trivial Solution
Case 2: constant $=0$
$\phi^{\prime \prime}=0 \quad \phi^{\prime}(0)=0, \phi^{\prime}(L)=0$
$\phi(x)=$ \qquad
$\phi^{\prime}(x)=\quad \Rightarrow \phi^{\prime}(0)=$ \qquad $=0$
$\phi^{\prime}(x)=$ \qquad $\Rightarrow \phi^{\prime}(L)=$ \qquad $=0 \Rightarrow \phi=$ \qquad (Arbitrary Constant)

Case 3: constant $=-\lambda^{2}<0$
Finish Case 3.

Summarize the eigenvalues and eigenfunctions.

Write the final solution.
4. Find the limit as $t \rightarrow \infty$ for your solution $u(x, t)$. How does this limit relate to the steady-state solution?
5. Suppose the initial condition is given by $u(x, 0)=T_{0}+\frac{T_{1}-T_{0}}{L} x$.
(a). Sketch a picture of this initial condition (assume $T_{1}>T_{0}$).
(b). Solve for the coefficients with this initial condition.
(c). Write down the final solution for $u(x, t)$.

Homework: Section 2.4: \#2, 3, 5, 8

Verify the following orthogonality conditions by evaluating the integral
$\int_{0}^{L} \sin \left(\frac{(2 n-1) \pi x}{2 L}\right) \sin \left(\frac{(2 m-1) \pi x}{2 L}\right) d x$
for
(a). $n=m$
(b). $n \neq m$

