1. Recall, Euler's Formula:
$e^{i \theta}=\cos \theta+i \sin \theta$
$e^{-i \theta}=\cos \theta-i \sin \theta$
(a). Use Euler's Formulas above to verify the following definitions:

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

(b). Use the definitions from part (a) to write $\cos (n x)$ and $\sin (n x)$.
2. The Fourier Series for a 2π-periodic function is given by

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

Use the definitions from \#1 to rewrite the Fourier Series using $e^{i n x}$ and $e^{-i n x}$. Then distribute and collect all the $e^{i n x}$ and $e^{-i n x}$ terms.
3.
(a). What is the coefficient of the $e^{i n x}$ term? [Rationalize it, if possible.]
(b). What is the coefficient of the $e^{-i n x}$ term? [Rationalize it, if possible.]
(c). How are these two coefficients related? i.e. What do we call them?
$c_{0}=a_{0}$
4. Let $c_{n}=$ coefficient of $e^{i n x}$
$\overline{c_{n}}=$ coefficient of $e^{-i n x} \quad \overline{c_{n}}$ denotes complex conjugate
Then if you rewrite the Fourier Series in terms using complex exponentials and these coefficients, you should get

$$
f(x)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{i n x}+\overline{c_{n}} e^{-i n x}
$$

Clearly define c_{0}, c_{n}, and $\overline{c_{n}}$ in terms of a_{n} and b_{n}.
[See \#2 and \#3(a,b).]
5. Let $\overline{c_{n}}$ be denoted by c_{-n} since it corresponds to the coefficients preceding $e^{-i n x}$ (i.e. term involving $-n$). Now

$$
f(x)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{i n x}+c_{-n} e^{-i n x}
$$

which can be condensed into the single term series below
[Fill in the bounds - it may be helpful to write out a few of the terms in the series.]

$$
f(x)=\sum_{n=} c_{n} e^{i n x}
$$

This form is called the Complex Fourier Series for $f(x)$.
6. Recall the Fourier coefficients for a 2π-periodic function are given by the integrals
$a_{n}=$
and
$b_{n}=$
for $n=1,2, \ldots$
(a). Use the relationship $c_{n}=\frac{1}{2} a_{n}-\frac{1}{2} i b_{n}$, the integrals above, and the complex form of the sine and cosine functions to derive the formula for the complex Fourier coefficients c_{n} for $n=1,2, \ldots$.
(b). In part (a), you should have gotten $c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$. Verify that this formula will work for c_{0}.

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \quad \text { for all integers } n \quad \text { (e.g. negative, positive, and zero). }
$$

7. Find the Complex Fourier Coefficients for $f(x)=\left\{\begin{array}{rl}-1 & -\pi<x<0 \\ 1 & 0<x<\pi\end{array}\right.$
8. Given $f(x)=e^{\alpha x}$ on $-\pi<x<\pi$.
(a). Find the Complex Fourier Coefficients for
(b). Find a_{n} and b_{n} from part (a) using the relationship $c_{n}=\frac{1}{2} a_{n}-i \frac{1}{2} b_{n}$
