1. Recall, Euler's Formula: $e^{i\theta} = \cos \theta + i \sin \theta$

$$e^{-i\theta} = \cos\theta - i\sin\theta$$

(a). Use Euler's Formulas above to verify the following definitions:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 and $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

(b). Use the definitions from part (a) to write $\cos(nx)$ and $\sin(nx)$.

2. The Fourier Series for a 2π -periodic function is given by

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

Use the definitions from #1 to rewrite the Fourier Series using e^{inx} and e^{-inx} . Then distribute and collect all the e^{inx} and e^{-inx} terms.

3.

- (a). What is the coefficient of the e^{inx} term? [Rationalize it, if possible.]
- (b). What is the coefficient of the e^{-inx} term? [Rationalize it, if possible.]

(c). How are these two coefficients related? i.e. What do we call them?

 $c_0 = a_0$ 4. Let $c_n =$ coefficient of e^{inx} $\overline{c_n} =$ coefficient of e^{-inx}

Then if you rewrite the Fourier Series in terms using complex exponentials and these coefficients, you should get

 $\overline{c_n}$ denotes complex conjugate

$$f(x) = c_0 + \sum_{n=1}^{\infty} c_n e^{inx} + \overline{c_n} e^{-inx}$$

Clearly define c_0, c_n , and $\overline{c_n}$ in terms of a_n and b_n .

[See #2 and #3(a,b).]

5. Let $\overline{c_n}$ be denoted by c_{-n} since it corresponds to the coefficients preceding e^{-inx} (i.e. term involving -n). Now

$$f(x) = c_0 + \sum_{n=1}^{\infty} c_n e^{inx} + c_{-n} e^{-inx}$$

which can be condensed into the single term series below [Fill in the bounds – it may be helpful to write out a few of the terms in the series.]

$$f(x) = \sum_{n=1}^{\infty} c_n e^{inx}$$

This form is called the Complex Fourier Series for f(x).

6. Recall the Fourier coefficients for a 2π -periodic function are given by the integrals

$$a_n =$$
 and $b_n =$ for $n = 1, 2, \dots$

(a). Use the relationship $c_n = \frac{1}{2}a_n - \frac{1}{2}ib_n$, the integrals above, and the complex form of the sine and cosine functions to derive the formula for the complex Fourier coefficients c_n for n = 1, 2, ...

(b). In part (a), you should have gotten $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$. Verify that this formula will work for c_0 .

 $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \qquad \text{for all integers } n \qquad \text{(e.g. negative, positive, and zero)}.$

7. Find the Complex Fourier Coefficients for $f(x) = \begin{cases} -1 & -\pi < x < 0 \\ 1 & 0 < x < \pi \end{cases}$

8. Given $f(x) = e^{\alpha x}$ on $-\pi < x < \pi$.

(a). Find the Complex Fourier Coefficients for

(b). Find a_n and b_n from part (a) using the relationship $c_n = \frac{1}{2}a_n - i\frac{1}{2}b_n$ [Simplify.]