Ex: Steady state heat equation in a thin rod [done in class].

<u>Ex</u>: Deflection of a string/cable (e.g.)

- Let u(x) be the
- Let u(0) = and u(L) =

Assumptions:

- f(x) is the ______.
- The cable hangs in _____ \implies _____.

Let T(x) =

Let $\phi(x) =$ with respect to the *x*-axis

For convenience, let $T_1 =$	and $T_2 =$	and $\alpha =$	and $\beta =$	
Newton's 2nd Law:				
Horizontal:				
Vertical:				
From (1): $T_1 \cos \alpha = T_2 \cos \beta$	\Rightarrow			

Substitute into (2): $- \sin \alpha + \sin \beta = f(x)\Delta x$

 \Rightarrow

Substitute $\phi(x)$ and $\phi(x + \Delta x)$ back in:

T [tan $- \tan] = f(x)\Delta x$

Replace the tangents with:	T [_	$] = f(x)\Delta x$
Rearrange:	$T \cdot$ ———	Δx	=f(x)
Take the limit:	$T \cdot \lim_{\Delta x \to 0} $	$ \Delta x$	=f(x)
Recognize:		$T \cdot$	= f(x)

BVP:

Possibilities for the load f(x)

<u>Ex</u>: Load is distributed uniformly in the x-direction. \Rightarrow

$$\frac{d^2u}{dx^2} = \frac{w}{T}$$
 on $0 < x < L$ $u(0) = h_0$ $u(L) = h_1$

Solve:

<u>Ex</u>: Cable hangs under its own weight w in units of weight per unit of length of cable.

BVP:
$$T \cdot \frac{d^2 u}{dx^2} = w \cdot$$
 on $0 < x < L$ $u(0) = h_0$ $u(L) = h_1$ ()

Solution given by

()

 $\underline{\mathbf{E} \mathbf{x}}:$ Buckling of a Column

$$\frac{d^2u}{dx^2} + \lambda^2 u = 0$$

 $u(0) = 0 \qquad u(L) = 0$

•

Note: This last example is an :

_____ Differential Equation with a parameter λ

(The values of λ for which there is a nontrivial solution are called the ______.)

Boundary Conditions