1. Classify each of the following differential equations as (i) an ODE or PDE; (ii) linear or nonlinear; and (iii) homogeneous or nonhomogeneous. Also, clearly state the (iv) order and the (v) independent and dependent variables.
(a). $3 \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+9 x=2 \cos 3 t$
(b). $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(c). $y\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=C$
(d). $\frac{\partial N}{\partial t}=\frac{\partial^{2} N}{\partial r^{2}}+\frac{1}{r} \frac{\partial N}{\partial r}+k N$
2. Solve the following first-order equations using the indicated method.
(a). $\frac{d u}{d t}=u^{2} \sin t$
(b). $\frac{d u}{d t}=k u \quad$ for constant k.
(c). $\frac{d u}{d t}=k(t) u \quad$ for arbitrary function $k(t) . \quad$ (answer will contain an integral) \quad [Separation of Variables]
(d). $\frac{d u}{d t}+\frac{1}{t} u=4 t^{2}$
3. Given the general second-order linear homogeneous equation with constant coefficients $\frac{d^{2} u}{d t^{2}}+k \frac{d u}{d t}+p u=0$
(a). Substitute the possible solution $u(t)=e^{m t}$ into the equation and simplify.

What is this new algebraic equation called?
(b). Solve this equation for m (i.e. find the roots m_{1}, m_{2}).
(c). For each case below, write down the general solution $u(t)$:

Roots of the	General Solution to the
Characteristic Equation	Differential Equation

Case 1 Real, distinct roots: $m_{1} \neq m_{2}$
Case 2 Real, repeated roots: $m_{1}=m_{2}$
Case 3 Complex conjugate roots:
$m_{1}=\alpha+i \beta, m_{2}=\alpha-i \beta$
(subcase) Purely imaginary when $\alpha=0: m_{1}=i \beta, m_{2}=-i \beta$
4. Find the general solution for the following differential equations. [Recall, that for higher-order equations with more than 2 roots, each root contributes the solution type above (multiply by an extra t each time it is repeated).]
(a). $u^{\prime \prime}+2 u^{\prime}+u=0$
(b). $\frac{d^{2} u}{d t^{2}}-\frac{d u}{d t}+7 u=0$
(c). $\frac{d^{4} u}{d t^{4}}+5 \frac{d^{2} u}{d t^{2}}-36 u=0$
(d). $D^{3}(D-5)^{2}\left(D^{2}+1\right)[u]=0$

$$
\left[D \equiv \frac{d}{d x}\right]
$$

