- Books and notes (in any form) are not allowed. You may use the formula sheet, an integration table, and a calculator.
- Clearly indicate your answers.
- Show all your work - partial credit may be given for written work.
- Good Luck!

Score	
1	$/ 12$
2	$/ 12$
3	$/ 14$
4	$/ 14$
5	$/ 14$
6	$/ 18$
7	$/ 100$
Total	

1. (12 pts). Determine whether the following boundary value problem has no solution, exactly one solution, or an infinite number of solutions.
[Show all your work.]
$\frac{d^{2} u}{d x^{2}}+u=1, \quad u(0)=0, \quad u^{\prime}\left(\frac{\pi}{2}\right)=0$
2. (12 pts). Find the general solution to the following differential equation.
$\frac{d}{d x}\left[(h+k x) \frac{d v}{d x}\right]=0 \quad h, k$ are constants.
3. (14 pts). Given the equation $x^{2}(4-x) u^{\prime \prime}+(x-1) u^{\prime}-3 x u=0$
(a). Identify all of the singular points.
(b). Classify each singular point as regular or irregular.
4. (14 pts). Given $t^{2} \frac{d^{2} u}{d t^{2}}+t \frac{d u}{d t}-u=-5 t^{3}$
(a). Use variation of parameters to find a particular solution given that $u_{1}(t)=t$ and $u_{2}(t)=\frac{1}{t}$ are solutions to the associated homogeneous equation.
(b). Write the general solution.
5. (14 pts). Clearly state and solve the steady-state problem for the heat equation problem below. $[r$ is a constant representing heat generation.]

PDE: $\frac{1}{k} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+r \quad 0<x<L, t>0$
$\mathrm{BC}: \quad u(0, t)=0 \quad \frac{d u}{d x}(L, t)=S_{0} \quad t>0$
IC: $\quad u(x, 0)=f(x) \quad 0<x<L$
6. (18 pts). Use $n=4$ to set up the replacement equations for

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}-4 x \frac{d u}{d x}=0, \quad 0<x<1 \\
& u(0)=0, \quad u(1)=3
\end{aligned}
$$

[Substitute any known values and simplify the equations, but do not solve.]
7. (18 pts). Take-Home Problem - see separate sheet. Due Monday, March 14, 2016 by 8 am.

