You may find it helpful to refer to a Calculus book for the on the differentiation rules and integration techniques.

1. Differentiate the following. Don't forget the chain rule, when needed.
[Do not simplify.]
(a). $s(t)=8 t^{2}-4 t+1$
(b). $y=\sin \omega t$
(c). $y=t e^{3 t}$
(d). $f(x)=\frac{\sqrt{x^{2}+1}}{2 x^{3}-1}$
2. Integrate the following using the stated rule or technique. You must show all your work.
(a). $\int t^{2}-3 d t \quad$ [power rule]
(b). $\int \sec ^{2} x d x \quad$ [trig rule]
(c). $\int x \sqrt{x^{2}+1} d x \quad$ [u-subs.]
(d). $\int x e^{-4 x} d x \quad$ [integration by parts]
(e). $\int \frac{1}{x^{2}+9} d x$
[trig. subs.]
(f). $\int \frac{x-1}{x^{2}+3 x+2} d x \quad$ [partial fractions]
3. Integrate the following integrals. Show all your work.
(a). $\int \frac{1}{3 x-4} d x$
(b). $\int \sin 2 x d x$
(c). $\int x^{2} \cos x d x$
(d). $\int \frac{x+1}{\sqrt{4 x^{2}+8 x}} d x$
(e). $\int \ln x d x$
(f). $\int \tan ^{2} x d x$
