Use Maple to complete this worksheet.
Save your Maple worksheet as MapleExercises2_YourLastNameFirstInitial.mw and submit via email to crawford@elmhurst.edu by 11:59 pm on Thursday 02/20.

Remember you can always look at the help pages. Some of the commands used in this assignment are simplify, plot (\& plot/options), diff, int, limit, solve, and fsolve

1. Simplify the following expression. $\quad 5 a \cdot\left\{\frac{\frac{2}{3}+\left[2-\frac{3}{2}(4+a)-8 a+6 b\right]}{2 b+\frac{1}{a}}\right\}$
2. Graph the function $y=\frac{2 x^{2}-3 x+2}{x^{2}-1}$

Make sure the graph looks "nice."
3. Find the derivative of $f(x)=\frac{\sqrt{3 x^{4} \ln x}}{\sec \left(4 x^{2}+8 x\right)}$
4. Find the partial derivative $u_{z y x x}$ for $u=\sqrt{x+2 y^{2}+3 z^{3}}$
5. Given $f(x, y, z)=\tan \left(\frac{3 x+2 y}{z}\right)$, find $f_{y}(\pi, 2 \pi, 3)$. [Make sure any trig functions are evaluated.]
6. Evaluate the following integrals.
(a). $\int \sqrt{3-2 x^{2}} d x$
(b). $\int_{2}^{4} \int_{0}^{1} \int_{0}^{1-z^{2}} 2 x z e^{y} d x d z d y$
7. Determine the following limit. $\lim _{t \rightarrow \infty} \frac{3 \mathrm{e}^{-2 t}+5 \mathrm{e}^{2 t}}{2 \mathrm{e}^{-2 t}+3 \mathrm{e}^{2 t}}$
8. Use the solve command to find the values of x that satisfy general quadratic equation $a x^{2}+b x+c=0$
9. Use the solve command to find the solutions to the following system of equations. If the solve command does not work, try using fsolve.
$3 a+2 b-c=1$
$a-b=0$
$2 a+2 b+c=3$
10. Use Maple to
(a). Graph the functions $y=\sin (2 x)$ and $y=\frac{1}{2} x+\frac{1}{2}$ on the same set of axes.

Make the sine function a thicker, solid black curve. Make the line a dashed blue curve.
[On the bottom of the plot help page, click on plot/options. Notice all the options you can change. For this problem, you only need color, linestyle, and thickness.]
(b). Find the intersections of these two graphs.
[Try using the solve command first - what happens? Then use fsolve to find the solutions. You may need to specify an approximate starting value to get each of the solutions.]

