Given the \qquad
$\frac{d y}{d t}=-y^{4}-8 y^{3}-21 y^{2}+22 y-8=-(y-1)^{2}(y-2)(y-4)$
(a). Find all equilibrium solutions. i.e.
(b). Use the direction field below to determine the behavior of solutions as $t \rightarrow \infty$.

Ex: If $y(0)=3$, predict the asymptotic behavior (as $t \rightarrow \infty$).

Now use the direction field to do this generally for all possible initial conditions.
Since the ODE is autonomous, the slopes do not depend on t
ie. Only need the value of y to give the slope

Classification and Stability of Equilibrium Points
If a solution is perturbed (ie. moves slightly) from the equilibrium point

1. \qquad if all perturbed solutions return to approach it.
2. \qquad if all perturbed solutions move away from it.
3. \qquad if some perturbed solutions move away and some return to approach it.

Easier way (ie. w/o using the direction field) to sketch the phase line:
[More examples on the board.]
Homework: Section 2.5, p. 67: \#[1, 2, 4, 6, 9 Do not sketch solutions in $t y$-plane], 16(a), 19, 20, [21(a) Then answer: For any initial condition $y(0)=y_{0}$, what will the proportion of the population infected with the disease approach as $t \rightarrow \infty$?]

