Mathematical Models describe \qquad phenomena.
e.g., projectile motion, swinging pendulum, springs, seismic waves, population growth, radioactive decay, etc.

Def A Differential Equation is an \qquad relating an \qquad and

Ex:

You have seen some DE Models in Calculus:
Ex: Free falling object (gravity is the only force acting on it). Let $h(t)$ be the height of the object at time t.
Then is the acceleration.

From Newton's 2nd Law:

- The solution to the DE is a
- \qquad appeared in the general solution (due to integration).

Given the derivative of x with respect to t : $\frac{d x}{d t}$, we know that

- x is the \qquad variable
- t is the \qquad variable

Ex: $\frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0$
Ex: $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$

Ordinary Differential Equation (\qquad): The unknown function (dependent variable) depends

Partial Differential Equation (\qquad): The unknown function (dependent variable) depends

A System of Differential Equations:

Ex: Populations: $x(t)$ is a prey population and $y(t)$ is a predator population.

The ORDER of a differential equation is \qquad appearing in the equation.

Ex: $\frac{d A}{d t}=-k A$
Ex: $y^{\prime \prime}-y \cdot y^{\prime}=0$
Ex: $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$

A general $n^{\text {th }}$ order ODE involves

- The independent variable (e.g. t)
- The dependent variable (e.g. y) \qquad
General form:

$$
\begin{equation*}
F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

Ex: $y^{(i v)}+3 \sin (t) y^{\prime \prime}+y=0$

Alternate form:

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right) \tag{2}
\end{equation*}
$$

Ex:

Recall, linear equations in 2D \& 3D:

$$
a x+b y+c=0
$$

$$
a x+b y+c z+d=0
$$

Examples of nonlinear equations:

A differential equation is Linear if

Otherwise, it is Nonlinear.

Ex: $3 y^{\prime \prime}+2 y^{\prime}+y=0$
Ex: $: \frac{d^{2} y}{d x^{2}}-y \frac{d y}{d x}=0$
Ex: $5 x^{2} y^{\prime \prime}+3(\cos x) y=e^{x}$

Def A function $\phi(x)$ is a solution to the ODE [form (1) or (2)] on an interval I given that

$$
\phi, \phi^{\prime}, \phi^{\prime \prime}, \ldots, \phi^{(n)} \quad \text { and }
$$

$F\left(t, \phi, \phi^{\prime}, \phi^{\prime \prime}, \ldots, \phi^{(n)}\right)=0$
or

$$
\phi^{(n)}=f\left(t, \phi, \phi^{\prime}, \phi^{\prime \prime}, \ldots, \phi^{(n-1)}\right)
$$

on the interval I.

Ex: Verify that $\phi(x)=x^{3}+x$ is a solution to $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$

