- Books and notes (in any form) are not allowed.
- You may use calculators and the provided integral table.
- Put all of your work and answers on other sheets of paper. Include this sheet as a cover sheet.
- Show all your work. Partial credit may be given for written work.

Formulas that may or may not be helpful.
$R=\sqrt{C_{1}^{2}+C_{2}^{2}} \quad \tan \delta=\frac{C_{2}}{C_{1}}$
$\cos (A)+\cos (B)=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\cos (A)-\cos (B)=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$

Good Luck!

Score	
1	$/ 6$
2	$/ 14$
3	$/ 24$
4	$/ 14$
5	$/ 14$
6	$/ 14$
7	$/ 100$
Total	

1. (6 pts). Determine the longest interval in which the given initial value problem is guaranteed to have a unique solution. [Do not attempt to find the solution.]
$(t-3) y^{\prime \prime}+\ln |t| y^{\prime}=t, \quad y(1)=1, y^{\prime}(1)=-4$
2. (14 pts). Determine the form only of a particular solution y_{p}.

Do NOT evaluate the constants.
$D(D-2)^{2}\left(D^{2}+1\right)[y]=t^{2}+t e^{2 t}+e^{t} \sin t$
3. (24 pts). Find the general solution for the following differential equations.
(a). $y^{\prime \prime}-4 y^{\prime}+7 y=0$
(b). $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$
4. (14 pts). Solve the following initial value problem.
$y^{\prime \prime}+y^{\prime}-6 y=3 t+10 e^{-3 t} \quad y(0)=0, y^{\prime}(0)=1$
5. (14 pts). Given the initial value problem
$y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y(0)=1, y^{\prime}(0)=b$
(a). Find the solution in terms of b.
(b). Determine the time t_{M} (in terms of b) at which a maximum in the graph occurs.
6. (14 pts). Given that $y_{1}(t)=\cos (3 t)$ and $y_{2}(t)=\sin (3 t)$ are solutions to the corresponding linear homogeneous equation, use variation of parameters to find the particular solution for the following differential equation. Then write the general solution.
$y^{\prime \prime}+9 y=\sec (3 t)$
7. (16 pts). A mass of 12 g stretches a spring 4 cm . The mass is attached to a viscous damper with a damping constant of $360 \mathrm{dyn} \cdot \mathrm{s} / \mathrm{cm}$. The mass is compressed 2 cm from equilibrium position and then released. [Note: The units are all consistent and $g=980 \mathrm{~cm} / \mathrm{s}^{2}$.]
(a). Set up, but do not solve, the initial value problem for this mass-spring system.
(b). Solve for the general solution only, but do not solve for the constants using the initial conditions.
(c). Determine the quasi-period.

