1. Determine whether the following initial value problem has a unique solution. If so, what is the largest interval or rectangle on which a unique solution exists.
$x(x-3) y^{\prime \prime}+2 x y^{\prime}-y=x^{2}, \quad y(1)=y_{0}, y^{\prime}(1)=y_{1}$
2. (11th Edition) Section 3.2 , p. $119 \# 10$ [Be sure to show that y_{1} and y_{2} are linearly independent.]
3. Write the form only of the particular solution y_{p}. Do not evaluate the coefficients.
(a). $y^{\prime \prime}+5 y^{\prime}+25 y=\left(1+x^{3}\right) e^{-5 x}$
(b). $y^{(v)}-y^{\prime \prime \prime}-2 y^{\prime}=8 x \cos x+\sin x+3$
4. Determine a particular solution to the following differential equations
(a). $y^{\prime \prime}+y^{\prime}-12 y=3 x-e^{-2 x}$
(b). $y^{\prime \prime}+y=e^{3 x} \cos x$
5. Given that $y_{1}(x)=\frac{1}{4} \sin 2 x$ is a solution to $y^{\prime \prime}+2 y^{\prime}+4 y=\cos 2 x$ and $y_{2}(x)=\frac{1}{4} x-\frac{1}{8}$ is a solution to $y^{\prime \prime}+2 y^{\prime}+4 y=x$, find solutions to $y^{\prime \prime}+2 y^{\prime}+4 y=3 x-4 \cos 2 x$.
6. Solve the following equations and initial value problems
(a). $4 y^{\prime \prime}+9 y=0, \quad y(0)=3, y^{\prime}(0)=2$
(b). $y^{\prime \prime}-2 y^{\prime}+6 y=0$
(c). $y^{\prime \prime}+y^{\prime}-12 y=0$
(d). $y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}+12 y=0$
(e). $y^{\prime \prime}-y^{\prime}-6 y=36 x^{2}, \quad y(0)=3, y^{\prime}(0)=\frac{4}{3}$
(f). $3 y^{\prime \prime}+12 y=4 \sin 3 t$
(g). $y^{\prime \prime}-3 y^{\prime}+2 y=x\left(e^{x}+1\right), \quad y(0)=1, y^{\prime}(0)=-1$
(h). $D^{3}(D-2)^{2}\left(D^{2}+9\right)[y]=0$
7. Find a general solution to the following differential equations.
(a). $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=x^{-1}$ given that $y_{1}=\frac{1}{x^{2}}$ and $y_{2}=x$ are solutions to the homogeneous equation.
(b). $y^{\prime \prime}+y=\tan x$
(c). $y^{\prime \prime}+y=\tan x+e^{3 x} \cos x \quad$ [Hint: No work necessary. Use part (b) and \# 4(b).]
8. Use reduction of order to find a 2 nd linearly independent solution, given that y_{1} is a solution to the differential equation. Also, give the general solution.
(a). $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0$ and $y_{1}(x)=x$
(b). $x^{2} y^{\prime \prime}+2 x y^{\prime}=0$ and $y_{1}(x)=1$
9. (11th Edition) Section 3.7, p. 157: \#5
10. A 1 kg mass is attached to a spring with stiffness $26 \mathrm{~N} / \mathrm{m}$. The damping constant is $2 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. At $t=0$ an external force of $82 \cos 4 t$ is applied. If the spring is initially stretched 6 m and given a positive velocity of $1 \mathrm{~m} / \mathrm{s}$, determine the equation of motion for the system and sketch the solution. Write the steady-state solution in the form $R \cos (\omega t-\delta)$
11. If an undamped spring-mass system with a mass that weighs 6 lb and a spring constant $1 \mathrm{lb} / \mathrm{in}$ is suddenly set in motion at $t=0$ by an external force of $4 \cos 7 t \mathrm{lb}$, determine the position of the mass at any time and draw a graph of the solution.
12. Solve the following differential equations and initial value problems.
(a). $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0$
(b). $2 x^{2} y^{\prime \prime}+2 x y^{\prime}+8 y=0, \quad y(1)=0, y^{\prime}(1)=-3$
