[This worksheet assumes that you know the basic definitions of trigonometric functions in terms of sides of a right triangle.]

1. Theorem (Pythagorean Identity) For any angle $\theta, \sin ^{2} \theta+\cos ^{2} \theta=1$.

Sketch a right triangle $\triangle A B C$ with right angle at $C$. Using standard convention, label the sides $a, b$, and $c$.
$\underline{\text { Proof }}$ Let $\triangle A B C$ be the right triangle defined above and let $\theta=\angle A$.

Then $\sin \theta=$ $\qquad$ and $\cos \theta=$ $\qquad$
Also, from the Pythagorean Theorem, we have $\qquad$ .

Divide both sides by $c^{2}$ :
i.e. $\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1$.

Substitute the trig. functions from (*): $\qquad$ .
2. THEOREM (Law of Sines). If $\triangle A B C$ is any triangle, then $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.
[Sketch and label a general triangle.]

PROOF Let $\triangle A B C$ be a triangle. [Show $\frac{\sin A}{a}=\frac{\sin B}{b}$. The proof for the other equality will be similar.]
In any triangle, there can be at most one non-acute angle. So either $\angle A$ or $\angle B$ must be an acute angle.

WLOG, assume that $\angle A$ is acute.

Case 1. $\angle B$ is acute.
[Sketch triangle ( $\angle A$ and $\angle B$ both acute).]

Drop a perpendicular from $C$ to $\overleftrightarrow{A B}$ and call the foot $D$. By Lemma 4.8.6, $A * D * B$.

$$
\sin A=\quad \Rightarrow \quad C D=\ldots \quad \text { and } \quad \sin B=\quad \Rightarrow D=
$$

Therefore $b \sin A=a \sin B$.

Divide both sides by $a b \Rightarrow$ $\qquad$

Case 2. $\angle B$ is a right angle. [Finish Case 2 as homework. Note the definitions of $\sin \theta$ and $\cos \theta$ for special angles on p. 116.]

Case 3. $\angle B$ is obtuse. [Sketch triangle ( $\angle A$ is acute and $\angle B$ is obtuse).]

Drop a perpendicular from $C$ to $\overleftrightarrow{A B}$ and call the foot $D$. Since $\angle B$ is obtuse, $A * B * D$

Note that $\triangle B D C$ is a $\qquad$ with right angle at $D$.

Also $\angle B=\angle A B C$ is obtuse and forms a $\qquad$ with $\angle D B C$, so they are $\qquad$ .

Then $\sin B=$ $\qquad$ by the definition of $\sin \theta$ for obtuse angles on p .116 .

Therefore $\sin B=$ $\qquad$ $\Rightarrow C D=$ $\qquad$ .

Using $\triangle A C D, \sin A=$ $\qquad$ $\Rightarrow C D=$ $\qquad$ .

Therefore $b \sin A=a \sin B$. Divide both sides by $a b \Rightarrow$ $\qquad$

In all three cases, $\frac{\sin A}{a}=\frac{\sin B}{b}$.
Similarly, it can be shown that $\frac{\sin B}{b}=\frac{\sin C}{c}$.
Therefore, $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

Homework: Finish Case 2 for the Law of Sines; Prove the Law of Cosines (Section 5.5, p. 117 \#2)

