[This worksheet assumes that you know the basic definitions of trigonometric functions in terms of sides of a right triangle.]

1. <u>THEOREM</u> (Pythagorean Identity) For any angle θ , $\sin^2 \theta + \cos^2 \theta = 1$.

Sketch a right triangle $\triangle ABC$ with right angle at C. Using standard convention, label the sides a, b, and c.

<u>**PROOF**</u> Let $\triangle ABC$ be the right triangle defined above and let $\theta = \angle A$.

Then $\sin \theta =$	and $\cos \theta =$	(*)		
Also, from the Pythage	prean Theorem, we have			
Divide both sides by c^2	2:			
i.e. $\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1.$				
Substitute the trig. functions from (*):				
2. <u>THEOREM</u> (Law of S	Sines). If $\triangle ABC$ is any triang	le, then $\frac{\sin A}{a} =$	$\frac{\sin B}{b} = \frac{\sin C}{c}$,

[Sketch and label a general triangle.]

<u>PROOF</u> Let $\triangle ABC$ be a triangle. [Show $\frac{\sin A}{a} = \frac{\sin B}{b}$. The proof for the other equality will be similar.] In any triangle, there can be at most one non-acute angle. So either $\angle A$ or $\angle B$ must be an acute angle.

WLOG, assume that $\angle A$ is acute.

Case 1. $\angle B$ is acute. [Sketch triangle ($\angle A$ and $\angle B$ both acute).] Drop a perpendicular from C to \overrightarrow{AB} and call the foot D. By Lemma 4.8.6, A * D * B. $CD = _$ and $\sin B = _$ $\sin A =$ CD =_____. \Rightarrow Therefore $b \sin A = a \sin B$. Divide both sides by $ab \Rightarrow$ **Case 2.** $\angle B$ is a right angle. [Finish Case 2 as homework. Note the definitions of sin θ and cos θ for special angles on p. 116.] **Case 3.** $\angle B$ is obtuse. [Sketch triangle ($\angle A$ is acute and $\angle B$ is obtuse).] Drop a perpendicular from C to \overrightarrow{AB} and call the foot D. Since $\angle B$ is obtuse, A * B * D. Note that $\triangle BDC$ is a _____ with right angle at D. Also $\angle B = \angle ABC$ is obtuse and forms a with $\angle DBC$, so they are . Then $\sin B =$ by the definition of $\sin \theta$ for obtuse angles on p. 116. Therefore $\sin B = _ \Rightarrow CD = _$. Using $\triangle ACD$, sin $A = \Rightarrow CD = _$. Therefore $b \sin A = a \sin B$. Divide both sides by $ab \Rightarrow$ In all three cases, $\frac{\sin A}{a} = \frac{\sin B}{b}$. Similarly, it can be shown that $\frac{\sin B}{b} = \frac{\sin C}{c}$. Therefore, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

Homework: Finish Case 2 for the Law of Sines; Prove the Law of Cosines (Section 5.5, p. 117 #2)