Some theorems we already have:
Theorem 3.4.7 (Existence and Uniqueness of Angle Bisectors) If A, B, and C are three noncollinear points, then there exists a unique angle bisector for $\angle B A C$.

ThEOREM 3.5.9 If l is a line and P is a point on l, then there exists exactly one line m such that P lies on m and $m \perp l$.
Theorem 3.5.11 (Existence and Uniqueness of Perpendicular Bisectors) If D and E are two distinct points, then there exists a unique perpendicular bisector for $\overline{D E}$.

Some new theorems:
Theorem 4.1.3 (Existence and Uniqueness of Perpendiculars) For every line l and for every point P, there exists a unique line m such that P lies on m and $m \perp l$.

Sketch picture(s) and explain the difference or similarity between Theorems 3.5.9 and 4.1.3.

Terminology : By 4.1.3 we can say, "drop a perpendicular from P to l." Also the point F that where the perpendicular intersects l is called the foot (of the perpendicular).
[Case 2 picture below.]

Proof Let l be a line and P be a point.

Case 1: P is on l. Then the conclusion is true by Theorem \qquad .

Case 2: P is not on l.
[Sketch a picture.]
[Existence: Show m exists s.t. \qquad and \qquad .]

Let Q and Q^{\prime} be two distinct points on l and define the angle $\angle Q^{\prime} Q P$.

By Angle Construction, there exists a point R on the opposite side of l from P such that \qquad $\cong \angle Q^{\prime} Q R$.

By Point Construction, let P^{\prime} be a point on $\overrightarrow{Q R}$ such that $\overline{Q P} \cong \overline{Q P^{\prime}}$.

Let $m=$ \qquad .
[By construction, $P \in m$, but we still need to show $m \perp l$.]

By Plane Separation, $l \cap \overline{P P^{\prime}}$ \qquad . Let F be this point of intersection.

Subcase (a): $F=Q . \quad$ [Resketch (include R)]

Then $\angle Q^{\prime} F P=\angle Q^{\prime} Q P$ and $\angle Q^{\prime} F P^{\prime}=\angle Q^{\prime} Q P^{\prime}$ form a \qquad .

Thus $\mu\left(\angle Q^{\prime} Q P\right)+\mu\left(\angle Q^{\prime} Q P^{\prime}\right)=180$.

But since $\angle Q^{\prime} Q P \cong \angle Q^{\prime} Q R$ and $\angle Q^{\prime} Q R=\angle Q^{\prime} Q P^{\prime}$, then $\angle Q^{\prime} Q P \cong$ \qquad .

Two congruent angles that sum to 180 must each \qquad Therefore \qquad .

Subcase (b): $F \neq Q$ and F lies on the ray $\overrightarrow{Q Q^{\prime}} . \quad$ [Resketch.]

Then \qquad $=\angle P Q Q^{\prime}$ and $\angle P^{\prime} Q F=$ \qquad .

Thus $\angle P Q F \cong \angle P^{\prime} Q F$ since $\angle P Q Q^{\prime} \cong$ \qquad $=\angle P^{\prime} Q Q^{\prime}$.

Therefore, $\triangle F Q P \cong$ \qquad by SAS.

Thus $\angle Q F P \cong$ \qquad by triangle congruency.

But $\angle Q F P$ and $\angle Q F P^{\prime}$ also form a \qquad .

Congruent angles that form a linear pair, must be \qquad (by the same argument as in subcase (a).

Therefore $m \perp l$.

Subcase (c): $F \neq Q$ and F lies on the ray opposite $\overrightarrow{Q Q^{\prime}} . \quad$ [Resketch.]

Then $\angle P Q F$ and $\angle P Q Q^{\prime}$ form a linear pair and are thus \qquad .

Similarly $\angle P^{\prime} Q F$ and \qquad form a linear pair and are supplements.

Therefore, since $\angle Q^{\prime} Q P \cong \angle Q^{\prime} Q P^{\prime}$, then $\angle P Q F \cong \angle P^{\prime} Q F$.

Thus, $\triangle F Q P \cong \triangle F Q P^{\prime}$ by \qquad .

The rest of the proof is the same as subcase (b).

Theorem 4.3.4 Let l be a line, let P be an external point, and let F be the foot of the perpendicular from P to l. If R is any point on l that is different from F, then $P R$ \qquad $P F$.

Sketch a picture.

Restate (informal): The \qquad distance from a point to a line is measured along the perpendicular.

Proof Homework [Exercise 4.3.7]
[Go on and come back to it, if time.]

Def If l is a line and P is a point, the distance from P to l, denoted $d(P, l)$ is defined to be the distance from P to the foot of the perpendicular from P to l.

Theorem 4.3.6 (Pointwise Characterization of Angle Bisector) Let A, B, and C be three noncollinear points and let P be a point in the interior of $\angle B A C$. Then P lies on the angle bisector of $\angle B A C$ iff $d(P, \overleftrightarrow{A B})$ \qquad $d(P, \overleftrightarrow{A C})$

Sketch a picture (one with P on the angle bisector and one with P not on it).

Proof Homework [Exercise 4.3.8]
[Go on and come back to it, if time.]

Theorem 4.3.7 (Pointwise Characterization of Perpendicular Bisector) Let A and B be distinct points. A point P lies on the perpendicular bisector of $\overline{A B}$ iff $P A=P B$.

Sketch a picture (one with P on the perpendicular bisector and one with P not on it).

Proof Not assigned.

Summary of Homwork: Finish Uniqueness part of the proof on p.2; Section 4.3, p. 81: \#(2, 3, 6, 5), 7, 8

