[Close your books.]

1. <u>THEOREM</u> (ASA): If $\triangle ABC$ and $\triangle DEF$ are triangles such that $\angle CAB \cong \angle FDE$, $\overline{AB} \cong \overline{DE}$, $\angle ABC \cong \angle DEF$, then $\triangle ABC \cong \triangle DEF$.

Sketch a diagram for this theorem.

<u>PROOF</u> Let $\triangle ABC$ and $\triangle DEF$ be defined as above.		[Show $\triangle ABC \cong \triangle DEF.$]
[If we can show	w congruence of another side, t	then we can use]
Since the length DF is a nonnegative number, then by the point G on \overrightarrow{AC} such that $AG = _$.		, there exists a
Therefore $\overline{AG} \cong ___$.	[To finish the proof: Use S.	AS and eventually show $G = C$.]
Now $\overline{AG} \cong \overline{DF}$, $\angle CAB \cong \angle FDE$, and $\overline{AB} \cong \overline{DE}$, so by	$_$, $\triangle ABG _$	$_ \triangle DEF.$
$\Rightarrow \angle ABG \cong \angle DEF$. But $\angle DEF \cong \angle ABC$ (given in hypothesis)	nesis). Therefore, $\angle ABC$	≅
$\Rightarrow \overrightarrow{BC} = \overrightarrow{BG},$ by the Protractor Postulate, Part		
But \overrightarrow{BC} can intersect \overleftarrow{AC} in at most one point. (Theorem 3	.1.7)	
Therefore and $\triangle ABC \cong \triangle DEF$.		
2. Recall the Isosceles Triangle Theorem 3.6.5 (restatement	nt): If $\triangle ABC$ is a triar	ngle and $\overline{AB} \cong \overline{AC}$, then

<u>THEOREM</u> (Converse to the Isosceles Triangle Theorem):

[State the converse, then check your answer on p. 74.]

Sketch a diagram for this theorem.

 $\angle ABC \cong \angle ACB$

Sketch a generic triangle (preferably not right, isosceles, or equilateral).

<u>DEF</u> Let $\triangle ABC$ be a triangle. The angles $\angle CAB, \angle ABC$, and $\angle BCA$ are called ______ angles of the triangle.

On your picture above, extend the segments \overline{AC} and \overline{BC} to be rays \overline{AC} and \overline{BC} . Label a point on the extension \overline{AC} to be E and a point on the extension \overline{BC} to be D.

What can you say about angles $\angle BCA$ and $\angle ACD$?

What can you say about angles $\angle ACB$ and $\angle BCE$?

<u>DEF</u> Let $\triangle ABC$ be a triangle. An angle that forms a linear pair with one of the interior angles is called an ______ angle for the triangle. If the exterior angle forms a ______ pair with the interior angle at one vertex, then the interior angles at the other two vertices are called remote interior angles.

What are the exterior angles for $\triangle ABC$ and vertex C?

What are the remote interior angles?

3. <u>THEOREM</u> (Exterior Angle Theorem). The measure of an exterior angle for a triangle is strictly greater than the measure of either remote interior angle.

Fill in the blanks to restate this theorem.

 $\underline{\text{RESTATEMENT}}: \text{Let } \triangle ABC \text{ be any triangle and let } D \text{ lie on } \overleftarrow{BC} \text{ so that } \angle ACD \text{ is an exterior angle of the triangle.}$ Then $\mu(\angle DCA) >$ and $\mu(\angle DCA) >$.

<u>PROOF</u> Let $\triangle ABC$ be any triangle and let D lie on \overrightarrow{BC} so that $\angle ACD$ is an exterior angle of the triangle.

Case 1: [Show $\mu(\angle DCA) > \mu(\angle BAC)$]

Let E be the midpoint of \overline{AC} . (Existence of unique midpoint.)

Construct the point F so that E is the midpoint of \overline{BF} . (Point Construction Postulate.)

[Sketch a picture. Update the picture as you work through the proof.]

Thus, $\angle BEA$ and $\angle FEC$ form a Theorem.	pair and are therefore		by the Vertical Angles
Thus, $\triangle BEA \cong$ by SAS.			
So $\angle BAC \cong$, by definition of congr	ruent triangles.	(*)	
By construction, F is on the interior of $\angle DCA$.			
Thus, $\mu(\angle FCA) < \mu(\angle DCA)$ by Betweenness for	or Rays. (**)		
By (*) and (**), we have $\mu(\angle) > \mu(\angle D)$	CA).		

Case 2: [Show $\mu(\angle DCA) > \mu(\angle ABC)$] [Finish the proof as homework. Hint: Extend the side \overline{AC} to create an angle congruent to $\angle ACD$.]

Homework

Finish the worksheet, including Section 4.2, p. 77 #1 and Case 2 above. Section 4.1, p. 73 #1 Sketch two triangles that show that SSA is not a valid triangle congruence condition. i.e. If you have congruence of SSA, it does not guarantee that the two triangles will be congruent.