			,
Close	vour	books.	ı

1. Theorem (The Z-Theorem): Let l be a line and let A and D be distinct points on l. If B and E are points on opposite sides of l, then $\overrightarrow{AB} \cap \overrightarrow{DE} = \underline{\emptyset}$.

Sketch a diagram for this theorem and fill in the blank above.

[Can you see why it is called the Z-Theorem?]

PROOF Let l be a line and let A and D be distinct points on l.

Also let B and E be on opposite sides of l.

By the (contrapositive of) the Ray Theorem, all points on \overrightarrow{AB} , except \underline{A} lie in one half-plane determined by l,

Similarly, all points on \overrightarrow{DE} , except $\underline{\underline{D}}$ lie in $\underline{\underline{D}}$ determined by l.

The half-planes do not intersect by the ____Plane Separation____ Postulate.

Thus the only place the rays could intersect would be at the endpoints .

But since A and D are ____distinct__ , $\overrightarrow{AB} \cap \overrightarrow{DE} = \emptyset$.

2. THEOREM (The Crossbar Theorem): Let $\triangle ABC$ be a triangle. If a point D is in the interior of $\angle BAC$, then $\overrightarrow{AD} \cap \overrightarrow{BC} = \emptyset$.

Sketch a diagram for this theorem and fill in the blank above.

[Can you see why it is called the Crossbar Theorem?]

Fill in the blanks to (informally) restate the Crossbar Theorem: If a ray is in the <u>interior</u> of one of the angles of a triangle, then the ray must intersect the <u>opposite</u> side of the triangle.

PROOF We'll do it later as a class.

3. THEOREM A point D is in the interior of $\angle BAC$ if and only if $\overrightarrow{AD} \cap \overline{BC} \neq \emptyset$.

Sketch a diagram for this theorem and fill in the blank above.

Proof

 \Rightarrow : Let D be a point in the interior of $\angle BAC$. Then \overrightarrow{AD} intersects \overline{BC} by the <u>Crossbar Theorem</u>.

 $\Leftarrow : \operatorname{Let} \: \overrightarrow{AD} \cap \overline{BC} \neq \emptyset.$

Then let $E \in \overrightarrow{AD} \cap \overline{BC}$. Note that $\overrightarrow{AD} = \overrightarrow{AE}$.

Then B * E * C. [How do you know that E is not B or C?]

Thus, by Theorem 3.3.10, \overrightarrow{AB} * \overrightarrow{AE} * \overrightarrow{AC} .

Thus, E is in the interior of \angle <u>BAC</u>

Since $D \in \overrightarrow{AE}$, D is in the interior of $\angle BAC$ by the Ray Theorem.

4. LEMMA If C * A * B and D is in the interior of $\angle BAE$ then E is in the interior of $\angle DAC$.

Sketch a diagram for this lemma.

PROOF Let C * A * B and let D be in the interior of $\angle BAE$.

Since D is in the interior of $\angle BAE$, D and E are on the <u>same side</u> of \overrightarrow{AB} .

But since $\overrightarrow{AB} = \overrightarrow{AC}$, D and E are on the same side of \overrightarrow{AC} .

By the Crossbar Theorem, $\overrightarrow{AD} \cap \overrightarrow{BE} \neq \emptyset$.

Therefore E and B are on opposite sides of AD.

Since C * A * B, C and B are on ____opposite sides of \overrightarrow{AD} .

Thus C and E are on the <u>same side</u> of \overrightarrow{AD} by the Plane Separation Postulate.

Therefore E is in the interior of $\angle DAC$.

5. THEOREM (The Linear Pair Theorem): If angles $\angle BAD$ and $\angle DAC$ form a linear pair, then $\mu(\angle BAD) + \mu(\angle DAC) = \underline{\qquad}$.

Sketch a diagram for this theorem and fill in the blank above.

PROOF We'll do it later as a class.