[Close your books.]

1. Theorem (The Z-Theorem): Let l be a line and let A and D be distinct points on l. If B and E are points on opposite sides of l, then $\overrightarrow{A B} \cap \overrightarrow{D E}=$ \qquad -.
Sketch a diagram for this theorem and fill in the blank above. [Can you see why it is called the Z-Theorem?]
$\underline{\text { Proof }}$ Let l be a line and let A and D be distinct points on l.
Also let B and E be on opposite sides of l.
By the (contrapositive of) the Ray Theorem, all points on $\overrightarrow{A B}$, except $\quad A \quad$ lie in one half-plane determined by l,
Similarly, all points on $\overrightarrow{D E}$, except $\quad D \quad$ lie in \quad the other half-plane determined by l.
The half-planes do not intersect by the Plane Separation_Postulate.
Thus the only place the rays could intersect would be at \quad the endpoints .
But since A and D are distinct, $\overrightarrow{A B} \cap \overrightarrow{D E}=\varnothing$.
2. Theorem (The Crossbar Theorem): Let $\triangle A B C$ be a triangle. If a point D is in the interior of $\angle B A C$, then $\overrightarrow{A D} \cap \overline{B C}$ \qquad Ø.

Sketch a diagram for this theorem and fill in the blank above. [Can you see why it is called the Crossbar Theorem?]

Fill in the blanks to (informally) restate the Crossbar Theorem: If a ray is in the interior of one of the angles of a triangle, then the ray must intersect the \qquad side of the triangle.

Proof We'll do it later as a class.
3. THEOREM A point D is in the interior of $\angle B A C$ if and only if $\overrightarrow{A D} \cap \overline{B C}$ \qquad \emptyset.

Sketch a diagram for this theorem and fill in the blank above.

PROOF
\Rightarrow : Let D be a point in the interior of $\angle B A C$. Then $\overrightarrow{A D}$ intersects $\overrightarrow{B C}$ by the \qquad Crossbar Theorem .
\Leftarrow : Let $\overrightarrow{A D} \cap \overline{B C} \neq \varnothing$.
Then let $E \in \overrightarrow{A D} \cap \overrightarrow{B C}$. Note that $\overrightarrow{A D}=\overrightarrow{A E}$.
Then $B * E * C$. [How do you know that E is not B or C ?]
Thus, by Theorem 3.3.10, \qquad * \qquad * $\overrightarrow{A C}$

Thus, E is in the interior of $\angle _B A C$
Since $D \in \overrightarrow{A E}, D$ is in the interior of $\angle B A C$ by the Ray Theorem.
4. Lemma If $C * A * B$ and D is in the interior of $\angle B A E$ then E is in the interior of $\angle D A C$.

Sketch a diagram for this lemma.

Proof Let $C * A * B$ and let D be in the interior of $\angle B A E$.
Since D is in the interior of $\angle B A E, D$ and E are on the same side of $\overleftrightarrow{A B}$.
But since $\overleftrightarrow{A B}=\overleftrightarrow{A C}, D$ and E are on the same side of $\underset{A C}{\overleftrightarrow{A C}}$.
By the Crossbar Theorem, $\overrightarrow{A D} \cap \overline{B E} \neq \varnothing$.
Therefore E and B are on opposite sides of $\overleftarrow{A D}$.
Since $C * A * B, C$ and B are on opposite sides of $\overleftrightarrow{A D}$.
Thus C and E are on the same side_ of $\overleftrightarrow{A D}$ by the Plane Separation Postulate.
Therefore E is in the interior of $\angle D A C$.
5. Theorem (The Linear Pair Theorem): If angles $\angle B A D$ and $\angle D A C$ form a linear pair, then $\mu(\angle B A D)+\mu(\angle D A C)=$ \qquad ${ }^{\circ}$.
Sketch a diagram for this theorem and fill in the blank above.

Proof We'll do it later as a class.

