AXIOM 5 (THE PROTRACTOR POSTULATE)

For every angle $\angle BAC$ there is a real number $\mu = \mu(\angle BAC)$ called the _____such that

1.
$$0^{\circ} \le \mu^{\circ} < 180^{\circ}$$

2.
$$\mu = 0^{\circ}$$
 iff $\overrightarrow{AB} = \overrightarrow{AC}$

3. For each real number r where $0^{\circ} < r^{\circ} < 180^{\circ}$ and for each of the two half-planes determined by \overrightarrow{AB} , there exists a unique ray \overrightarrow{AE} such that E is in the half-plane and $\mu(\angle BAE) = r^{\circ}$

(

4. If the ray \overrightarrow{AD} is between the rays \overrightarrow{AB} and \overrightarrow{AC} , then $\mu(\angle BAD) + \mu(\angle DAC) = \mu(\angle BAC)$

(

DEF Two angles are congruent if they have the	·
i.e. $\angle BAC \cong \angle EDF$ if	
$\underline{\underline{\text{DEF}}}$ An angle with measure $\mu = 90^{\circ}$ is a	angle.
An angle with measure $\mu < 90^{\circ}$ is a	angle.
An angle with measure $\mu > 90^{\circ}$ is a	_ angle.
LEMMA If A, B, C , and D are four distinct points $S \not A \overrightarrow{C}$, then either C is in the interior of $\angle BAD$ or $D \not A \overrightarrow{C}$.	such that C and D are on the same side of \overrightarrow{AB} and D is not on D is in the interior of $\angle BAC$.
PROOF Let A, B, C and D be defined as above.	
Suppose D is not in the interior of $\angle BAC$	[Show]
Then D and B are on of $\stackrel{\leftarrow}{A}$	\overrightarrow{AC}
Therefore $\overline{BD} \cap \overleftrightarrow{AC}$ \emptyset by the Plane Separ	ration Postulate.
Let P be this point of intersection	
Then P is between B and D and by theorem 3.3.1	10 (proved on previous worksheet),
Therefore, P is in the interior of $\angle BAD$.	Still need to show that is in the interior of $\angle BAD$.]
	[How?:]
P lies on \overrightarrow{AC} since it is the intersection point.	
Therefore \overrightarrow{AP} will equal \overrightarrow{AC} as long as they are no	ot rays.
Since P is in the interior of $\angle BAD$, P and D are	$a \leftrightarrow b$
· · · · · · · · · · · · · · · · · · ·	on side of AB .
Then P and C are also on the same side of AB are	on side of AB . and hence, \overrightarrow{AP} and \overrightarrow{AC} be opposite rays.
Then P and C are also on the same side of AB and Therefore $\overrightarrow{AP} = \overrightarrow{AC}$ \Rightarrow $\overrightarrow{AB} *$	and hence, \overrightarrow{AP} and \overrightarrow{AC} be opposite rays.

Why don't we have to prove that "If C is not in the interior of $\angle BAD$, then D is in the interior of BAC?"

 $\underline{\text{Theorem}} \text{ (Betweenness Theorem for Rays). Let } A, B, \underline{C}, \text{ and } D \text{ be four distinct points such that } C \text{ and } D \text{ lie on the same side of } \overrightarrow{AB}. \text{ Then } \mu(\angle BAD) < \mu(\angle BAC) \text{ iff } \overrightarrow{AD} \text{ is between } \overrightarrow{AB} \text{ and } \overrightarrow{AC}.$

PROOF Let A, B, C , and D be defined as stated a	above.	
\Leftarrow : Let \overrightarrow{AD} be between \overrightarrow{AB} and \overrightarrow{AC} .		[Show $\mu(\angle BAD) < \mu(\angle BAC)$]
Then	_ by the Protractor Postulate	Part 4.
Since $\mu(DAC) > 0 \Rightarrow \mu(\angle BAD) < \mu(\angle BAC)$ by		
	For a	\rightarrow . \rightarrow . \rightarrow
$\Rightarrow : \text{Let } \mu(\angle BAD) < \mu(\angle BAC)$	•	ow \overrightarrow{AD} is between \overrightarrow{AB} and \overrightarrow{AC} .
BWOC, suppose that \overrightarrow{AD}	AB and AC.	
Case 1: D lies on \overrightarrow{AC} .		
Then $\mu(\angle BAD)$ $\mu(\angle BAC)$.	(*)	
Case 2: D does not lie on \overrightarrow{AC} .		
Then by the previous Lemma, is in the	ne interior of	
Thus, \overrightarrow{AC} is between by de	efinition of between for rays (D ϵ	ef 3.3.8).
Then by the first half of this theorem,		(**)
Combining the results of Case 1 and 2, we have t		$C) \longrightarrow \leftarrow$
Therefore, \overrightarrow{AD} is between \overrightarrow{AB} and \overrightarrow{AC} .	, 	
<u>Def</u> Let A, B , and C be three noncollinear point the interior of BAC and $\mu(\angle BAD) = \mu(\angle DAC)$.	ts. A ray \overrightarrow{AD} is an	of $\angle BAC$ if D is in
[Sketch]		
Theorem If A, B , and C are three noncollinear j	points, then there exists a unique	ne angle bisector for $\angle BAC$.
\underline{PROOF} Let A, B , and C be three noncollinear po	ints.	
By the Protractor Postulate Part 1, $0^{\circ} \leq \mu(\angle BA)$	C) < 180°. Thus, \leq	$\frac{1}{2}\mu(\angle BAC) < \underline{\qquad}.$
Then by the Protractor Postulate Part 3, there ex	ists a unique ray \overrightarrow{AE} such that	$\mu(\angle BAE) =$
and E can be chosen to be on the same side of \overleftarrow{A}		
Since $\mu(\angle BAE) = \frac{1}{2}\mu(\angle BAC) < \mu(\angle BAC) \Rightarrow _$ for Rays.	is between \overrightarrow{AB} and \overrightarrow{A}	\overrightarrow{AC} by the Betweenness Theorem [continued on next page
· · · ·		[page

Then $\mu(\angle BAE) + \mu(\angle EAC) = \mu(\angle BAC)$ by
$\Rightarrow \frac{1}{2}\mu(\angle BAC) + \mu(\angle EAC) = \mu(\angle BAC) \ \Rightarrow \mu(\angle EAC) = \frac{1}{2}\mu(\angle BAC) \ \Rightarrow \mu(\angle BAE) = \mu(\angle EAC) = \frac{1}{2}\mu(\angle BAC).$
Therefore an \overrightarrow{AE} is an angle bisector for $\angle BAC$. Still need to show uniqueness. – do later as homework.]
DEF Two lines l and m are if there exists a point A that lies on both l and m and there exist points $B \in l$ and $C \in m$ such that $\angle BAC$ is a right angle.
Denoted:
Sketch]
OEF A of \overline{AB} is a line l such that the midpoint of \overline{AB} lies on l and $\overleftrightarrow{AB} \perp l$. Sketch]
\overrightarrow{DEF} Two angles $\angle BAD$ and $\angle DAC$ form a if \overrightarrow{AB} and \overrightarrow{AC} are opposite rays.
DEF Two angles $\angle BAC$ and $\angle DEF$ are if $\mu(\angle BAC) + \mu(\angle DEF) = 180^{\circ}$. Sketch]
DEF Angles $\angle BAC$ and $\angle DAE$ form a (or are) if \overrightarrow{AB} and \overrightarrow{AE} are opposite rays and \overrightarrow{AC} and \overrightarrow{AD} are opposite rays and \overrightarrow{AC} and \overrightarrow{AE} are opposite ays.