[Close your books.]
Axiom 4 (The Plane Separation Postulate). For every line l, the points that do not lie on l form two disjoint, nonempty sets H_{1} and H_{2}, called half-planes bounded by l, such that

1. H_{1} and H_{2} are convex.
2. If $P \in H_{1}$ and $Q \in H_{2}$, then $\overline{P Q}$ intersects l.

The postulate can be restated using set theory notation. Fill in the following blanks for what the postulate says about H_{1} and H_{2} :

- $H_{1} _H_{2}=\mathbb{P} \backslash l$ Intersection or union?
- $H_{1} _H_{2}=\emptyset \quad$ Intersection or union?
- $H_{1} \quad \emptyset$ and $H_{2} \quad \emptyset$
- If $A \in H_{1}$ and $B \in H_{1}$, then $\overline{A B} \subseteq$ \qquad and $\overline{A B} \cap l$ \qquad Ø
- If $A \in H_{2}$ and $B \in H_{2}$, then $\overline{A B} \subseteq$ \qquad and $\overline{A B} \cap l$ \qquad \emptyset
- If $A \in H_{1}$ and $B \in H_{2}$, then $\overline{A B} \cap l$ \qquad \emptyset

1. Theorem (The Ray Theorem): Let l be a line, A a point on l, and B be an external point for l. If C is a point on $\overrightarrow{A B}$ and $C \neq A$, then B and C are on the same side of l
2. Sketch a diagram for this theorem.
3. Proof Let l be a line, A a point on l, and B an external point for l. Let C be a point on $\overrightarrow{A B}$ such that $C \neq A$.
[Show that B and C are on the same side of l. i.e. Show that $\overline{B C} \cap l=$ \qquad .]

Note that A, B, and C are \qquad and so we the following three cases.
$\underline{\text { Case } 1(C=B)}$: Trivially true since B and C are the \qquad point, they are clearly on the same side of l.

Case $2(A * C * B)$: Then A is \qquad B and C since for 3 collinear points only one point is between the other two (previous corollary).
Thus A \qquad $\overline{B C}$.

Since B is not on l, the lines $\overleftrightarrow{A B}$ and l are \qquad .
Since A is on both l and $\overleftrightarrow{A B}$, they are not parallel.
Therefore, the two lines intersect \qquad one point (previous theorem), which we already know is point A.

But this point A is not in \qquad from (*).

Therefore $\overline{B C} \cap l=$ \qquad and B and C are on the same side of l.
$\underline{\text { Case } 3(A * B * C)}$:
2. THEOREM Let A, B, and C be three noncollinear points and let D be a point on the line $\overleftrightarrow{B C}$. Then $B * D * C$ iff $\overrightarrow{\overrightarrow{A B}} * \overrightarrow{A D} * \overrightarrow{A C}$

1. Sketch a diagram for this theorem.
2. Proof Let A, B, and C be three noncollinear points and let D be a point on the line $\overleftrightarrow{B C}$.
\Rightarrow : Let $B * D * C$
[Show that $\overrightarrow{A B} * \overrightarrow{A D} * \overrightarrow{A C}$]
Then $D \in \overrightarrow{B C}$.
Then by the Ray Theorem, D and C are on the same side of \qquad .
Similarly D and B are on the same side of $\overleftrightarrow{A C}$.
So D is in the half-plane determined by $\overleftrightarrow{A B}$ and containing C.
The point D is also in the half-plane determined by $\overleftrightarrow{A C}$ and containing B.
Therefore D is in the intersection of these two half-planes.
Then D is in the \qquad of angle \qquad by definition.
Therefore $\overrightarrow{A B} * \overrightarrow{A D} * \overrightarrow{A C}$ by definition of \qquad for rays.
$\Leftarrow:$ Let $\overrightarrow{A B} * \overrightarrow{A D} * \overrightarrow{A C}$
[Show $B * D * C$]
Then D is in the interior of $\angle B A C$.
Therefore D is in the half-plane for $\overleftrightarrow{A B}$ that contains C. i.e. C and D are on \qquad $\overleftrightarrow{A B}$

Since the half-planes and their lines are disjoint sets (Plane Separation Postulate), the point B is not on the segment $\overline{C D}$. ${ }^{*}$)

Similarly, C is not on the line segment \qquad . ${ }^{* *}$)

Recall that the point D is on the line \qquad (given in the hypothesis). Therefore B, C, and D are

But by $\left({ }^{*}\right), B$ is not between C and D and by $\left({ }^{* *}\right), C$ is not between B and D.
Therefore, D must be between \qquad
3. Theorem (Pasch's Theorem [Axiom]) Let $\triangle A B C$ be a triangle and let l be a line such that none of A, B, and C lies on l. If l intersects $\overline{A B}$, then l also intersects either $\overline{A C}$ or $\overline{B C}$.

1. Sketch a diagram for this theorem.
2. Proof Let $\triangle A B C$ be a triangle and let l be a line such that none of A, B, and C lies on l.

Also, let l intersect $\overline{A B}$
[Show \qquad]

Since $\overline{A B} \cap l$ \qquad \emptyset, the points A and B are on \qquad of l.

Case $1(C$ is on the same side of l as $A)$: Then C and B are on \qquad of l.

Therefore $\overline{B C}$ intersects l (\qquad Postulate).
$\underline{\text { Case } 2(C \text { is on the opposite side of } l \text { as } A) \text { : Then }}$ \qquad intersects l (Plane Separation Postulate).

Homework:
Section 3.3, p. 47: \#1, 2, 3, 5

