[Close your books.]

AXIOM 4 (THE PLANE SEPARATION POSTULATE). For every line l, the points that do not lie on l form two disjoint, nonempty sets H_1 and H_2 , called half-planes bounded by l, such that

- **1**. H_1 and H_2 are convex.
- **2**. If $P \in H_1$ and $Q \in H_2$, then \overline{PQ} intersects l.

The postulate can be restated using set theory notation. Fill in the following blanks for what the postulate says about H_1 and H_2 :

Ø

- H_1 ____ $H_2 = \mathbb{P} \setminus l$
- H_1 ____ $H_2 = \emptyset$
- H_1 Ø and H_2 Ø
- If $A \in H_1$ and $B \in H_1$, then $\overline{AB} \subseteq _$ and $\overline{AB} \cap l$
- Ø
- If $A \in H_2$ and $B \in H_2$, then $\overline{AB} \subseteq ___$ and $\overline{AB} \cap l__$
- If $A \in H_1$ and $B \in H_2$, then $\overline{AB} \cap l$ \emptyset

Intersection or union?

Intersection or union?

1. <u>THEOREM</u> (The Ray Theorem): Let l be a line, A a point on l, and B be an external point for l. If C is a point on \overrightarrow{AB} and $C \neq A$, then B and C are on the same side of l

1. Sketch a diagram for this theorem.

2. <u>PROOF</u> Let *l* be a line, *A* a point on *l*, and *B* an external point for *l*. Let *C* be a point on \overrightarrow{AB} such that $\overrightarrow{C \neq A}$. [Show that *B* and *C* are on the same side of *l*. i.e. Show that $\overrightarrow{BC} \cap l =$ _____.]

Note that A, B, and C are ______ and so we the following three cases.

Case 1 (C = B): Trivially true since B and C are the _____ point, they are clearly on the same side of l.

Case 2 (A * C * B): Then A is ______ B and C since for 3 collinear points only one point is between the other two (previous corollary).

Thus A \overline{BC} . (*)

Since B is not on l, the lines \overleftrightarrow{AB} and l are _____.

Since A is on both l and \overleftrightarrow{AB} , they are not parallel.

Therefore, the two lines intersect $_$ one point (previous theorem), which we already know is point A.

But this point A is not in _____ from (*).

Therefore $\overline{BC} \cap l = _$ and B and C are on the same side of l.

Case 3 (A * B * C):

[Complete the proof.]

2. <u>THEOREM</u> Let A, B, and C be three noncollinear points and let D be a point on the line \overrightarrow{BC} . Then B * D * C iff $\overrightarrow{AB} * \overrightarrow{AD} * \overrightarrow{AC}$

1. Sketch a diagram for this theorem.

2. <u>PROOF</u> Let A, B, and C be three noncollinear points and let D be a point on the line \overrightarrow{BC} .

 \Rightarrow : Let B * D * C[Show that $\overrightarrow{AB} * \overrightarrow{AD} * \overrightarrow{AC}$] Then $D \in \overrightarrow{BC}$. Then by the Ray Theorem, D and C are on the same side of ______. Similarly D and B are on the same side of \overrightarrow{AC} . So D is in the half-plane determined by \overrightarrow{AB} and containing C. The point D is also in the half-plane determined by \overrightarrow{AC} and containing B. Therefore D is in the intersection of these two half-planes. Then *D* is in the ______ of angle ______ by definition. Therefore $\overrightarrow{AB} * \overrightarrow{AD} * \overrightarrow{AC}$ by definition of ______ for rays. $\Leftarrow: \text{Let } \overrightarrow{AB} * \overrightarrow{AD} * \overrightarrow{AC}$ [Show B * D * C] Then D is in the interior of $\angle BAC$. Therefore D is in the half-plane for \overrightarrow{AB} that contains C. i.e. C and D are on \overrightarrow{AB} . Since the half-planes and their lines are disjoint sets (Plane Separation Postulate), the point B is not on the segment \overline{CD} . (*) Similarly, C is not on the line segment ______. (**) Recall that the point D is on the line _____ (given in the hypothesis). Therefore B, C, and D are But by (*), B is not between C and D and by (**), C is not between B and D. Therefore, D must be between .

3. <u>THEOREM</u> (Pasch's Theorem [Axiom]) Let $\triangle ABC$ be a triangle and let l be a line such that none of A, B, and C lies on l. If l intersects \overline{AB} , then l also intersects either \overline{AC} or \overline{BC} .

1. Sketch a diagram for this theorem.

2. <u>PROOF</u> Let $\triangle ABC$ be a triangle and let *l* be a line such that none of *A*, *B*, and *C* lies on *l*.

Also, let l intersect \overline{AB}	[Show]
Since $\overline{AB} \cap l$ \emptyset , the points A and B are on	of <i>l</i> .
Case 1 (C is on the same side of l as A): Then C and	B are on of l.
Therefore \overline{BC} intersects l (H	Postulate).
Case 2 (C is on the opposite side of l as A): Then	intersects l (Plane Separation Postulate).

Section 3.3, p. 47: #1, 2, 3, 5