Go to the following link to open a GeoGebra application designed to explore Hyperbolic Geometry on the Poincaré Disk.

https://www.geogebra.org/m/R5e9AggU

You should see a GeoGebra window with a circular disk and a menu bar that looks like the following.

The three wrenches contain customized tools for exploring hyperbolic geometry. If you click on each one, a drop-down menu with the available tools appears:

248	Click on the other two wrenches to see the other available tools. Play around with a few of the tools to get comfortable with them.
4. Hyperbolic ine	
Q Hypertolic Ray	Notice that the window to the right will show coordinates and measurements as
4. Hyperololic Segment	you construct objects in the disk.
4 Hyperbolic Distance of Point2Line	To clear your GeoGebra screen, click on the ${ }^{\text {c }}$ icon in the upper right corner.
4 Hypertolic C Cirice w Given Radius	
Q Hypertoicic Angle	
Q Hypertolic Angewithgivensize	
/	

Vertical Angles:

- Construct two intersecting hyperbolic lines.
- Construct the point of intersection.
- Measure the vertical angles.
- Move the points around.

Does it appear that vertical angles are congruent in hyperbolic geometry?

Linear Pairs:

- In the same construction as above, measure two angles in a linear pair.
- Compute the sum of angle measure of the linear pairs.
- Move the points around.

Does it appear that linear pairs are supplementary angles in hyperbolic geometry.

Perpendicular Bisector:

Construction 1:

- Construct a line segment $A B$.
- Using the regular circle $\because \odot$, construct the circle with center at point A that passes through point B.
- Construct the regular circle with center at point B that passes through point A.
- Construct the two intersection points of the two circles. Let the two intersections points be labeled C and D . [Or leave them labeled as the points given by GeoGebra and adjust the instructions below accordingly.]
- Construct line CD.
- Construct the intersection point of segment AB and line CD . Call the point E . [Or leave it labeled as the point given by GeoGebra and adjust the instructions below accordingly.]

Does the line CD appear to bisect segment AB?

- Measure the lengths of $A E$ and $E B$ to confirm your guess.

So Construction 1 did or did not result in constructing the perpendicular bisector. [Circle one.]
[Clear the disk by clicking on ${ }^{3}$]
Construction 2:

- Construct a line segment AB.
- Using the Hyperbolic Circle tool, construct the circle with center at point A that passes through point B.
- Construct the hyberbolic circle with center at point B that passes through point A.
- Construct the two intersection points of the two circles. Let the two intersections points be labeled C and D . [Or leave them labeled as the points given by GeoGebra and adjust the instructions below accordingly.]
- Construct line CD.
- Construct the intersection point of segment AB and line CD . Call the point E . [Or leave it labeled as the point given by GeoGebra and adjust the instructions below accordingly.]

Does the line $C D$ appear to bisect segment $A B$?

- Measure the lengths of $A E$ and $E B$ to confirm your guess.
- Measure the angles to make sure they are 90 degrees.
[Clear the disk by clicking on ${ }^{\sim}$
Construction 3 [Which is probably Construction 2 built into a tool]:
- Construct a line segment $A B$.
- Use the Hyberbolic Perpendicular Bisector Tool to construct the perpendicular bisector to AB. [Select the tool and then select points A and B.]
[Clear the disk by clicking on ${ }^{\sim}$]
Angle Sum for Triangles:
- Construct triangle ABC .
- Measure each angle.
- Compute the sum of the angles.
- Move the points around.

Does the sum of the angles equal 180 degrees?
Does the sum of the angles equal a constant value for all triangles?
Try to create a triangle whose angle sum is 180 degrees? What do you notice?
[Clear the disk by clicking on ${ }^{\sim}$]
Isosceles Triangle:
[Note: Your points may be labeled differently than the instructions below. Adjust the directions as needed.]

- Construct three non-collinear points A, B, and C.
- Construct a hyperbolic circle with center at A. But do not have the circle go through any of the other points.
- Construct the ray $A B$ (with endpoint at A that passes through point B).
- Construct a ray AC (with endpoint at A that passes through point C).
- Let D be the intersection of ray $A B$ and the circle with center at A.
- Let E be the intersection of ray $A C$ and the circle with center at A.
- Construct triangle ADE. By construction, triangle ADE must be isosceles since two of its sides are radii of the same circle. Verify that the lengths are two sides are equal.
- Move the points around.

Do the base angles look congruent?
Measure the base angles. Does it confirm your guess?
[Clear the disk by clicking on ${ }^{\sim}$]

Additional Explorations:

1. Figure out how to construct an equilateral triangle. [Hint: Think about how the isosceles triangle was constructed.] Measure the lengths and angles and note any properties that are the same or different than for equilateral triangles in Euclidean Geometry.
2. Figure out how to construct a right triangle. [Hint: Look at your Hyperbolic Tools to see if you can create two lines or segments perpendicular to each other]. Measure the lengths of each side. Compute appropriate values to see whether the Pythagorean Theorem holds in Hyperbolic Geometry.
