Books and notes (in any form) are not allowed. You may use the provided list of Axioms, Postulates, and Theorems. Show all your work. Partial credit may be given for written work. Good Luck!

1. (16 pts) Let $A, B$, and $C$ be three distinct noncollinear points. Suppose there exists two points $D$ and $E$ such that $A * C * D$ and $B * E * C$. Sketch a picture (or pictures).

Determine which of the following must always be true in the context of Neutral Geometry and based on the axioms, theorems, and postulates up to and including 4.3.7.
(a). $D$ and $E$ are on the same side of $\overleftrightarrow{A B}$.
(b). $\overline{D E}$ must intersect $\overline{A B}$.
(c). $\mu(\angle D C B)=\mu(\angle C A B)+\mu(\angle C B A)$.
(d). $\overrightarrow{A E}$ bisects $\overline{B C}$.
(e). $A D>B C$.
(f). $\angle B E D$ is obtuse.

2. (12 pts) Given the figure above, find upper and lower bounds for
(a). $\mu(\angle E B C)=x$
(b). $\mu(\angle B E C)=y$.
3. (12 pts) Given the figure below, order the angle measures $\mu(\angle A), \mu(\angle B)$ and $\mu(\angle C)$ from smallest to largest. Clearly state any theorem(s) to justify your answer.

4. (12 pts) Fill in the blanks to prove the Triangle Inequality: If $A, B$, and $C$ are 3 noncollinear points, then $A C<A B+B C$.

Proof: Let $A, B$, and $C$ be 3 noncollinear points and define $\triangle A B C$.
By $\qquad$ , let $D$ be the point on $\overrightarrow{A B}$ such that $A * B * D$ and $B D=B C$.

Since $B$ is between $A$ and $D$, then $\overrightarrow{C B}$ is between $\qquad$ and $\qquad$ by $\qquad$
$\Rightarrow \mu(\angle A C B)+\mu(\angle B C D)=$ $\qquad$ by $\qquad$ .
$\Rightarrow \mu(\angle A C D) \quad \mu(\angle B C D)$.
Since $\triangle B C D$ is $\qquad$ , then $\mu(\angle B C D)=$ $\qquad$ . $\left.{ }^{* *}\right)$

Combining $\left({ }^{*}\right)$ and $\left({ }^{* *}\right) \Rightarrow \mu(\angle A C D)>\mu(\angle A D C)$.
Then $\qquad$ by the Scalene Inequality.

Therefore $A B+B C>A C$ since $\qquad$ .
5. (24 pts) Prove 2 of the following. Clearly state theorems and properties that you use.

BONUS: You may do (or attempt) all three options and each will be graded out of 12 points. Whichever two you score higher on will be your base grade. Any points from the third problem will be cut in third and added to your base grade.
(a). (Old) Let $A, B$, and $C$ be three noncollinear points and let $P$ be a point in the interior of $\angle B A C$. Also suppose that $P$ lies on the angle bisector of $\angle B A C$. Prove that $d(P, \overleftrightarrow{A B})=d(P, \overleftrightarrow{A C})$. [Note: This is one direction of Theorem 4.3.6.]
(b). (Old) Prove Theorem 3.5.12 Vertical Angles Theorem (Restated): If $\angle B A C$ and $D A E$ form a vertical pair, then $\angle B A C \cong \angle D A E$.
(c). (New) Let $\triangle H J K$ be an equilateral triangle. Suppose that $G * J * K * M$ such that $\overline{G J} \cong \overline{K M}$. Prove that $\overline{H G} \cong \overline{H M}$.
6. (24 pts) The take-home portion of the exam is due Thursday, November 8, 2018 beginning of class.

