[This worksheet assumes that you know the basic definitions of trigonometric functions in terms of sides of a right triangle.]

1. <u>THEOREM</u> (Pythagorean Identity) For any angle θ , $\sin^2 \theta + \cos^2 \theta = 1$.

Sketch a right triangle $\triangle ABC$ with right angle at C. Using standard convention, label the sides a, b, and c.

<u>**PROOF**</u> Let $\triangle ABC$ be the right triangle defined above and let $\theta = \angle A$.

Then $\sin \theta = \underline{\frac{a}{c}}$ and $\cos \theta = \underline{\frac{b}{c}}$ (*)

Also, from the Pythagorean Theorem, we have $\underline{a^2 + b^2 = c^2}$.

Divide both sides by c^2 : $\frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$

i.e. $\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1.$

Substitute the trig. functions from (*): $\underline{\sin^2 \theta + \cos^2 \theta = 1}$.

2. <u>THEOREM</u> (Law of Sines). If $\triangle ABC$ is any triangle, then $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$. [Sketch and label a general triangle.]

<u>PROOF</u> Let $\triangle ABC$ be a triangle. [Show $\frac{\sin A}{a} = \frac{\sin B}{b}$. The proof for the other equality will be similar.] In any triangle, there can be at most one non-acute angle. So either $\angle A$ or $\angle B$ must be an acute angle.

WLOG, assume that $\angle A$ is acute.

<u>**Case 1.**</u> $\angle B$ is acute.

[Sketch triangle ($\angle A$ and $\angle B$ both acute).]

Page 2

Drop a perpendicular from C to \overrightarrow{AB} and call the foot D. By Lemma 4.8.6, A * D * B.

 $\sin A = \underline{\frac{CD}{b}} \Rightarrow CD = \underline{b\sin A}$ and $\sin B = \underline{\frac{CD}{a}} \Rightarrow CD = \underline{a\sin B}$.

Therefore $b \sin A = a \sin B$.

Divide both sides by $ab \Rightarrow \underline{\qquad \frac{\sin A}{a} = \frac{\sin B}{b}}$.

 Case 2.
 $\angle B$ is a right angle. [Finish Case 2 as homework. Note the definitions of $\sin \theta$ and $\cos \theta$ for special angles on p. 116.]

 Case 3.
 $\angle B$ is obtuse.
 [Sketch triangle ($\angle A$ is acute and $\angle B$ is obtuse).]

Drop a perpendicular from C to \overrightarrow{AB} and call the foot D. Since $\angle B$ is obtuse, A * B * D.

Note that $\triangle BDC$ is a right triangle with right angle at D.

Also $\angle B = \angle ABC$ is obtuse and forms a linear pair with $\angle BDC$, so they are supplements .

Then $\sin B = \frac{\sin(\angle BDC)}{2}$ by the definition of $\sin \theta$ for obtuse angles on p. 116.

Therefore $\sin B = \underline{\frac{CD}{a}} \Rightarrow CD = \underline{a \sin B}$.

Using $\triangle ACD$, $\sin A = \underline{\frac{CD}{b}} \Rightarrow CD = \underline{b\sin A}$.

Therefore $b \sin A = a \sin B$. Divide both sides by $ab \Rightarrow \underline{\frac{\sin A}{a} = \frac{\sin B}{b}}$.

In all three cases, $\frac{\sin A}{a} = \frac{\sin B}{b}$. Similarly, it can be shown that $\frac{\sin B}{b} = \frac{\sin C}{c}$.

Therefore, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

Homework: Finish Case 2 for the Law of Sines; Prove the Law of Cosines (Section 5.5, p. 117#2)