State and prove the following corollary to the Converse to the Alternate Interior Angles Theorem:

Theorem (Converse to the Corresponding Angles Theorem)

Theorem (Parallel Projection Theorem) Let l, m, and n be distinct parallel lines. Let t be a transversal that cuts these lines at A, B, and C, respectively, and assume $A * B * C$. Let t^{\prime} be a transversal that cuts these lines at A^{\prime}, B^{\prime}, and C^{\prime}, respectively. Then $\frac{A B}{A C}=\frac{A^{\prime} B^{\prime}}{A^{\prime} C^{\prime}}$.
[Sketch]

Proof (Given w/o proof - you can look it up in Section 5.2 later).

DEF Triangles $\triangle A B C$ and $\triangle D E F$ are \qquad if $\angle A B C \cong \angle D E F, \angle B C A \cong \angle E F D$, and $\angle C A B \cong$ $\angle F D E$.

Denoted $\triangle A B C \sim \triangle D E F$.
Sketch two similar triangles that are not congruent.

THEOREM (Fundamental Theorem of Similar Triangles) If $\triangle A B C \sim \triangle D E F$, then $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$.

Proof Let $\triangle A B C \sim \triangle D E F$.
[Show the first equality $\frac{A B}{D E}=\frac{A C}{D F}$]

Case $1 A B=D E$. Then $\triangle A B C \cong \triangle D E F$ by \qquad ASA

Then $A C=D F$ and therefore, $\frac{A B}{D E}=\frac{A C}{D F}=$ \qquad .

Case $2 A B \neq D E$.

WLOG, let $A B>D E$. [Sketch. Include congruent angles.]

Then by the Ruler Postulate, construct a point B^{\prime} on $A B$ such that \qquad $A B^{\prime}=D E$.

Then B^{\prime} is external to $l=\overleftrightarrow{B C}$ and by the EPP, there exists a unique line m through $\quad B^{\prime}$ such that
\qquad $m \| l$

By Pasch's Axiom, m must intersect $\quad \overrightarrow{A C}$ (since m is parallel to $\quad \overleftrightarrow{B C}$). Let C^{\prime} be this point of intersection.

Then by the \qquad Converse to the Corresponding Angles Theorem , $\angle A B^{\prime} C^{\prime} \cong \angle A B C$.

Therefore $\triangle A B^{\prime} C^{\prime} \cong \triangle D E F$ by $A S A$.

By the EPP, construct the unique line n through A such that n is parallel to \qquad m and l .

By the Parallel Projection Theorem, $\frac{A B^{\prime}}{A B}=\underline{\frac{A C^{\prime}}{A C}}$.
$\Rightarrow \frac{D E}{A B}=\frac{D F}{A C}$ by congruent triangles.
Or equivalently, $\frac{A B}{D E}=\frac{A C}{D F}$.

The proof of the second equality is similar.

State and Prove:
Theorem (Converse to the Similar Triangles Theorem)
[Hint: Use cases like previous theorem. Use the Converse to Corresponding Angles Theorem and SSS.]

DEF If $\triangle A B C \sim \triangle D E F$, then the number $r=\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$, is called the common ratio of the sides of the similar triangles.

Theorem (SAS Similarity Criterion) If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\angle C A B \cong \angle F D E$ and $\frac{A B}{A C}=\frac{D E}{D F}$, then $\triangle A B C \sim \triangle D E F$.

Proof Given w/o proof (but proof has similarities to Similar Triangles Theorem and its Converse.)

THEOREM (ASA Similarity Criterion) If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\angle C A B \cong \angle F D E, \angle A B C \cong$ $\angle D E F$ and $D E=r \cdot A B$, then $\triangle A B C \sim \triangle D E F$ with common ratio r.

Proof

Standard Notation for triangles: Let a, b, and c denote the length of the sides opposite vertices A, B, and C, respectively.

Theorem (The Pythagorean Theorem) If $\triangle A B C$ is a right triangle with right angle at C, then $a^{2}+b^{2}=c^{2}$.
[Hint for proof: Drop a perpendicular from C and show that you have 3 similar triangles. May need Lemma 4.8 .6 (w/o proof).]
PROOF

